QUALITY CONTROL MIDYEAR REPORT Volume 17, No. 1 June 2006 #### INTRODUCTION The Newborn Screening Quality Program Assurance (NSOAP), Centers for Disease Control and Prevention (CDC), distributed driedblood-spot (DBS) quality control (QC) materials for thyroxine (T_4) , thyroid-stimulating hormone (TSH), α-hydroxyprogesterone (17-OHP), total galactose (Gal), phenylalanine (Phe), leucine (Leu), methionine (Met), tyrosine (Tyr), valine (Val), citrulline (Cit), and nine acylcarnitines (C3, C4, C5, C5DC, C6, C8, C10, C14, C16) to laboratories operating newborn screening programs and to manufacturers of screening test products. Included with each semiannual shipment of OC specimens were data-report forms to be completed and returned to CDC. This midyear report contains a summary of the QC data submitted during the first half of 2006 by state, contract, and private laboratories in the United States; international participants; and manufacturers of screening test products. ---- QC DATA ---see pages 4-25 # QUALITY CONTROL MATERIALS The QC specimen lots were provided as 6-month supplies of DBSs on filter paper. All DBS QC lots were prepared from whole blood of 55% hematocrit with lysed red blood cells. The QC materials were enriched with predetermined quantities of the selected analytes and dispensed in $100~\mu L$ aliquots on Whatman Inc. (Fairfield, NJ) Grade 903~filter paper. A QC shipment for T₄, TSH, or 17-OHP consisted of blood-spot materials from three lots per analyte, with each lot containing a different concentration of analyte. A QC shipment for Gal, Phe, Leu, Met, Tyr, Val, Cit, and the acylcarnitines consisted of blood-spot cards from four different lots. The QC materials were supplied for use as external controls in quantities sufficient to maintain continuity and transcend changes in production lots of routinely used method- or kit-control materials. The external QC materials were intended to supplement the participants' method- or kit-control materials at periodic intervals and to allow participants to monitor the long-term stability of their assays. The QC materials should not be used as routine daily QCs. #### PARTICIPANTS' RESULTS For this midyear report, we compiled the data that each participant reported from five analytic runs of specimens from each QC lot and calculated mean values and standard deviations from these data. Data values outside the 99% confidence interval for each OC lot were not included in the computations. We could not include qualitative data, data submitted as inequalities or ranges, data submitted in unidentified units, or data from more than five analytic runs per specimen lot per participant. Some participants submitted results in units other than those requested on the data-report forms. To ensure that all results are appropriately entered in the CDC database, participants should convert their results to the requested units before entering them on the data-report forms. The reported QC data are summarized in tables on pages 4–25, which show the analyte by series of QC lots, the number of measurements (N), the mean values, and the standard deviations (SD) by kit or analytic method. In addition, we used a weighted linear regression analysis to examine the comparability by method of reported versus enriched concentrations. Results of the linear regression analyses are summarized in the tables on pages 4–25. CDC/APHL This program is cosponsored by the Centers for Disease Control and Prevention (CDC) and the Association of Public Health Laboratories (APHL). Direct inquiries to: Centers for Disease Control and Preventtion (CDC) 4770 Buford Highway, NE, MS/F43 Atlanta, GA 30341-3724 Phone: 770-488-4582 FAX: 770-488-4255 E-mail: CBell@cdc.gov Editor : Production: Carol Bell Sarah Brown Connie Singleton #### DISCUSSION The enriched values of the QC specimen lots, shown in the tables for each lot, do not take into account the endogenous levels of the analytes; however, analytic results indicate that endogenous concentrations are negligible for all analytes except Phe, Leu, Met, Tyr, Val, Cit, and the acylcarnitines. For Phe, Leu, Met, Tyr, Val, Cit, and the acylcarnitines, the nonenriched base pools were distributed as the first QC specimen lot in each series so that participants could measure the endogenous Phe, Leu, Met, Tyr, Val, Cit, or acylcarnitine concentration of the series. OC lots 525-528 were enriched with Gal, Phe, Leu, Met, Tyr, Val, and Cit. QC lots 565-568 were enriched with acylcarnitines. All other OC lots were enriched with one analyte per lot. Gal lots 525-528 were enriched with equimolar quantities of simple galactose and galactose-1-phosphate. The tables, which summarize reported QC results (pages 4-25), provide data for method-related differences in analytic recoveries and method bias. Because we prepared each QC lot series from a single batch of hematocrit-adjusted, nonenriched blood, the endogenous concentration was the same for all specimens in a lot series. We calculated the withinlaboratory SD component of the total SD and used the reported QC data from multiple analytic runs for regression analyses. We calculated the Y-intercept and slope listed in each table using all analyte concentrations within a lot series (e.g., lots 511, 512, and 513). Because only three or four concentrations of QC materials are available for each analyte, a bias error in any one pool can markedly influence the slope and intercept. The Y-intercept provides one measure of the endogenous con- centration level for an analyte. For Phe, Leu, Met, Tyr, Val, Cit, and the acylcarnitines, participants measured the endogenous concentration levels by analyzing the nonenriched QC lots. When endogenous levels were compared for the amino acids and the acylcarnitines, we found them to be similar for all methods per analyte. Ideally, the slope should be 1.0, and most slopes were close to this value, ranging from 0.8 to 1.2 but some were a bit farther away. For example, for one Gal method, the slope was 1.4; for one Leu method, the slope was 1.5; for one C14 method, the slope was 0.68; and for two C5DC methods, the slopes were 0.65 and 0.69. The C5DC methods show the greatest variation in slopes among all analytes. For C5DC, note that for both kit and non-kit users, the calculation of concentrations for the QC lots varied with type of internal standard. Data are not sorted by internal standard type. In a 2003 survey, participants reported using do-C5, d₃-C8, d₃-C10, d₃-C12, d₃-C16, or d₆-C5DC as an internal standard for C5DC. These slope deviations may be related to analytic ranges for calibration curves. Because the endogenous concentration was the same for all QC lots within a series, it should not affect the slope of the regression line among methods. Generally, slope values substantially different from 1.0 indicate that a method has an analytic bias. Each year, with the extensive cooperation of Whatman Inc., we routinely monitor the absorption characteristics of approved filter paper. (Participants may refer to page 6 of the 2005 Newborn Screening Quality Assurance Program summary report* for charts of the serum absorbancies of 21 Grade 903 filter paper lots that CDC monitored.) The following Whatman Grade 903 filter paper lots were used in the production of QC specimen lots distributed during the first 6 months of 2006: W041 (Lots 501–503, 525–528, 565–568) and W011 (Lots 451–453, 511–513). * Bell CJ, editor. Newborn Screening Quality Assurance Program: 2005 Annual Summary Report. Atlanta: Centers for Disease Control and Prevention, 2006;23:1-77. http://www.cdc.gov/labstandards/nsqap.htm Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services or the association of Public Health Laboratories. #### http://www.cdc.gov/labstandards/nsqap.htm #### 2006 Quality Control Data Summaries of Statistical Analyses #### **THYROXINE** (μg T₄/dL serum) | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |---------------------------------|-----|------|-----------------------------|----------|------------------|-------| | Lot 501 - Enriched 2 μg/dL serv | um | | | | | | | Diagnostic Products | 20 | 3.2 | 0.6 | 0.6 | 1.4 | 0.9 | | MP Biomedicals (ICN) RIA | 20 | 2.5 | 0.5 | 0.5 | 1.0 | 0.9 | | Neo-Genesis Accuwell | 39 | 2.9 | 1.0 | 1.0 | 1.6 | 0.7 | | Delfia | 111 | 2.6 | 0.3 | 0.4 | 1.0 | 0.8 | | AutoDelfia | 330 | 2.4 | 0.4 | 0.7 | 0.8 | 0.8 | | Other | 39 | 2.5 | 0.3 | 0.4 | 0.3 | 1.0 | Lot 502 - Enriched 7 μ g/dL serum | Diagnostic Products | 20 | 7.8 | 1.5 | 1.6 | 1.4 | 0.9 | |--------------------------|-----|-----|-----|-----|-----|-----| | MP Biomedicals (ICN) RIA | 30 | 7.7 | 1.0 | 2.4 | 1.0 | 0.9 | | Neo-Genesis Accuwell | 39 | 6.9 | 1.2 | 1.4 | 1.6 | 0.7 | | Delfia | 111 | 6.9 | 0.6 | 0.9 | 1.0 | 0.8 | | AutoDelfia | 328 | 6.6 | 0.6 | 8.0 | 8.0 | 8.0 | | Other | 38 | 7.4 | 0.4 | 0.5 | 0.3 | 1.0 | Lot 503 - Enriched 11 μ g/dL serum | Diagnostic Products | 19 | 11.4 | 1.0 | 1.0 | 1.4 | 0.9 | |--------------------------|-----|------|-----|-----|-----|-----| | MP Biomedicals (ICN) RIA | 30 | 10.5 | 1.2 | 2.1 | 1.0 | 0.9 | | Neo-Genesis Accuwell | 39 | 9.5 | 1.2 | 1.5 | 1.6 | 0.7 | | Delfia | 112 | 10.0 | 1.1 | 1.6 | 1.0 | 8.0 | | AutoDelfia | 332 | 9.6 | 1.0 | 1.3 | 0.8 | 8.0 | | Other | 37 | 11.9 | 0.6 | 0.6 | 0.3 | 1.0 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### THYROID-STIMULATING HORMONE (µIU TSH/mL serum) | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope |
---|---|--|---|---|---|---| | | | | | | · · | | | Lot 511 - Enriched 25 μIU/mL s | | | | | | | | Diagnostic Products | 30 | 31.0 | 2.5 | 4.9 | -1.1 | 1.3 | | Neo-Genesis Accuwell | 30 | 24.3 | 3.0 | 3.0 | -0.7 | 1.0 | | MP Biomedicals (ICN) IRMA | 20 | 33.8 | 2.9 | 3.2 | 9.3 | 1.0 | | MP Biomedicals (ICN) ELISA | 18 | 21.8 | 2.7 | 5.3 | -2.0 | 0.9 | | Delfia | 514 | 27.5 | 3.4 | 5.5 | -0.5 | 1.1 | | AutoDelfia | 736 | 27.9 | 2.4 | 3.0 | 0.5 | 1.1 | | Ani Labsystems | 48 | 30.3 | 3.9 | 7.8 | 5.5 | 1.0 | | Bio-Rad Quantase | 140 | 34.1 | 4.5 | 7.5 | -1.1 | 1.4 | | TecnoSuma UMELISA | 29 | 25.9 | 3.1 | 4.7 | -0.1 | 1.1 | | Bioclone ELISA | 40 | 34.4 | 4.2 | 7.5 | 0.9 | 1.3 | | DiaSorin | 30 | 33.9 | 3.7 | 5.9 | 3.9 | 1.2 | | ECLIA | 10 | 22.3 | 0.8 | 0.8 | -2.0 | 1.0 | | | | | | | | | | In House | 89 | 30.4 | 3.4 | 4.9 | 4.3 | 1.0 | | In House
Other | 89
205 | 30.4
31.0 | 3.4
2.6 | 4.9
4.8 | 4.3
1.6 | 1.0
1.2 | | Other
Lot 512 - Enriched 40 μIU/mL s
Diagnostic Products | 205 | 31.0
51.9 | 3.9 | 4.8 | | 1.2 | | Other
Lot 512 - Enriched 40 μIU/mL s
Diagnostic Products
Neo-Genesis Accuwell | 205
serum
30
29 | 51.9
36.6 | 2.6
3.9
5.1 | 4.8
4.6
5.1 | -1.1
-0.7 | 1.2
1.3
1.0 | | Other
Lot 512 - Enriched 40 μIU/mL s
Diagnostic Products | 205
serum
30 | 31.0
51.9 | 3.9 | 4.8 | -1.1 | 1.2 | | Other
Lot 512 - Enriched 40 μIU/mL s
Diagnostic Products
Neo-Genesis Accuwell | 205
serum
30
29 | 51.9
36.6 | 2.6
3.9
5.1 | 4.8
4.6
5.1 | -1.1
-0.7 | 1.2
1.3
1.0 | | Other Lot 512 - Enriched 40 μIU/mL s Diagnostic Products Neo-Genesis Accuwell MP Biomedicals (ICN) IRMA | 205
serum
30
29
20 | 51.9
36.6
48.8 | 3.9
5.1
3.3 | 4.8
4.6
5.1
3.5 | -1.1
-0.7
9.3 | 1.2
1.3
1.0
1.0 | | Other Lot 512 - Enriched 40 µIU/mL s Diagnostic Products Neo-Genesis Accuwell MP Biomedicals (ICN) IRMA MP Biomedicals (ICN) ELISA | 205
serum
30
29
20
22 | 51.9
36.6
48.8
30.0 | 3.9
5.1
3.3
5.3 | 4.6
5.1
3.5
8.3 | -1.1
-0.7
9.3
-2.0 | 1.2
1.3
1.0
1.0
0.9 | | Other Lot 512 - Enriched 40 µIU/mL s Diagnostic Products Neo-Genesis Accuwell MP Biomedicals (ICN) IRMA MP Biomedicals (ICN) ELISA Delfia | 205
serum
30
29
20
22
511 | 51.9
36.6
48.8
30.0
42.0 | 3.9
5.1
3.3
5.3
4.7 | 4.6
5.1
3.5
8.3
7.0 | -1.1
-0.7
9.3
-2.0
-0.5 | 1.2
1.3
1.0
1.0
0.9
1.1 | | Other Lot 512 - Enriched 40 µIU/mL s Diagnostic Products Neo-Genesis Accuwell MP Biomedicals (ICN) IRMA MP Biomedicals (ICN) ELISA Delfia AutoDelfia | 205
serum
30
29
20
22
511
756 | 51.9
36.6
48.8
30.0
42.0
42.4 | 3.9
5.1
3.3
5.3
4.7
3.8 | 4.6
5.1
3.5
8.3
7.0
6.1 | -1.1
-0.7
9.3
-2.0
-0.5
0.5 | 1.3
1.0
1.0
0.9
1.1
1.1 | | Other Lot 512 - Enriched 40 µIU/mL s Diagnostic Products Neo-Genesis Accuwell MP Biomedicals (ICN) IRMA MP Biomedicals (ICN) ELISA Delfia AutoDelfia Ani Labsystems | 205
serum
30
29
20
22
511
756
49 | 51.9
36.6
48.8
30.0
42.0
42.4
48.0 | 3.9
5.1
3.3
5.3
4.7
3.8
4.3 | 4.6
5.1
3.5
8.3
7.0
6.1
10.4 | -1.1
-0.7
9.3
-2.0
-0.5
0.5
5.5 | 1.3
1.0
1.0
0.9
1.1
1.1 | | Other Lot 512 - Enriched 40 µIU/mL s Diagnostic Products Neo-Genesis Accuwell MP Biomedicals (ICN) IRMA MP Biomedicals (ICN) ELISA Delfia AutoDelfia Ani Labsystems Bio-Rad Quantase | 205
serum
30
29
20
22
511
756
49
139 | 51.9
36.6
48.8
30.0
42.0
42.4
48.0
53.5 | 3.9
5.1
3.3
5.3
4.7
3.8
4.3
6.2 | 4.8
4.6
5.1
3.5
8.3
7.0
6.1
10.4
10.9 | -1.1
-0.7
9.3
-2.0
-0.5
0.5
5.5 | 1.3
1.0
1.0
0.9
1.1
1.1
1.0 | | Other Lot 512 - Enriched 40 µIU/mL s Diagnostic Products Neo-Genesis Accuwell MP Biomedicals (ICN) IRMA MP Biomedicals (ICN) ELISA Delfia AutoDelfia Ani Labsystems Bio-Rad Quantase TecnoSuma UMELISA | 205
serum
30
29
20
22
511
756
49
139
29 | 51.9
36.6
48.8
30.0
42.0
42.4
48.0
53.5
44.7 | 3.9
5.1
3.3
5.3
4.7
3.8
4.3
6.2
7.6 | 4.8
4.6
5.1
3.5
8.3
7.0
6.1
10.4
10.9
8.2 | -1.1
-0.7
9.3
-2.0
-0.5
0.5
5.5
-1.1 | 1.2
1.3
1.0
1.0
0.9
1.1
1.1
1.0
1.4 | | Other Lot 512 - Enriched 40 µIU/mL s Diagnostic Products Neo-Genesis Accuwell MP Biomedicals (ICN) IRMA MP Biomedicals (ICN) ELISA Delfia AutoDelfia Ani Labsystems Bio-Rad Quantase TecnoSuma UMELISA Bioclone ELISA | 205
serum
30
29
20
22
511
756
49
139
29
40 | 51.9
36.6
48.8
30.0
42.0
42.4
48.0
53.5
44.7
54.9 | 3.9
5.1
3.3
5.3
4.7
3.8
4.3
6.2
7.6
5.8 | 4.8
4.6
5.1
3.5
8.3
7.0
6.1
10.4
10.9
8.2
11.2 | -1.1
-0.7
9.3
-2.0
-0.5
0.5
5.5
-1.1
-0.1 | 1.2
1.3
1.0
1.0
0.9
1.1
1.1
1.0
1.4
1.1 | | Other Lot 512 - Enriched 40 µIU/mL s Diagnostic Products Neo-Genesis Accuwell MP Biomedicals (ICN) IRMA MP Biomedicals (ICN) ELISA Delfia AutoDelfia Ani Labsystems Bio-Rad Quantase TecnoSuma UMELISA Bioclone ELISA DiaSorin | 205
serum
30
29
20
22
511
756
49
139
29
40
29 | 51.9
36.6
48.8
30.0
42.0
42.4
48.0
53.5
44.7
54.9
48.8 | 3.9
5.1
3.3
5.3
4.7
3.8
4.3
6.2
7.6
5.8
5.4 | 4.8
4.6
5.1
3.5
8.3
7.0
6.1
10.4
10.9
8.2
11.2
7.9 | -1.1
-0.7
9.3
-2.0
-0.5
0.5
5.5
-1.1
-0.1
0.9
3.9 | 1.2
1.3
1.0
1.0
0.9
1.1
1.1
1.0
1.4
1.1
1.3 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. ### 2006 Quality Control Data Summaries of Statistical Analyses #### **THYROID-STIMULATING HORMONE** (μIU TSH/mL serum) | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |--------------------------------|------|-------|-----------------------------|----------|------------------|-------| | Lot 513 - Enriched 80 μIU/mL s | erum | | | | | | | Diagnostic Products | 30 | 103.2 | 9.4 | 12.5 | -1.1 | 1.3 | | Neo-Genesis Accuwell | 29 | 76.9 | 9.0 | 9.1 | -0.7 | 1.0 | | MP Biomedicals (ICN) IRMA | 19 | 88.0 | 6.4 | 6.4 | 9.3 | 1.0 | | MP Biomedicals (ICN) ELISA | 20 | 67.8 | 9.3 | 13.5 | -2.0 | 0.9 | | Delfia | 489 | 86.8 | 8.9 | 13.0 | -0.5 | 1.1 | | AutoDelfia | 736 | 86.3 | 6.9 | 8.7 | 0.5 | 1.1 | | Ani Labsystems | 50 | 87.6 | 7.5 | 12.0 | 5.5 | 1.0 | | Bio-Rad Quantase | 130 | 109.9 | 11.5 | 23.3 | -1.1 | 1.4 | | TecnoSuma UMELISA | 29 | 86.0 | 10.8 | 12.8 | -0.1 | 1.1 | | Bioclone ELISA | 40 | 108.5 | 13.5 | 23.6 | 0.9 | 1.3 | | DiaSorin | 27 | 97.1 | 10.6 | 11.5 | 3.9 | 1.2 | | ECLIA | 10 | 75.2 | 2.3 | 2.3 | -2.0 | 1.0 | | In House | 90 | 87.5 | 5.5 | 11.9 | 4.3 | 1.0 | | Other | 205 | 94.8 | 6.2 | 15.3 | 1.6 | 1.2 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### 17 α-HYDROXYPROGESTERONE (ng 17-OHP/mL serum) | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |--|---|--|--|---|---|---| | Wethou | IN | IVICALI | | | intercept | Оюрс | | Lot 451 - Enriched 25 ng/mL s | orum | | | | | | | | | 07.0 | 2.0 | 2.0 | 1.0 | 1.0 | | MP Biomedicals (ICN) RIA | 20
30 | 27.2
26.0 | 2.9
5.2 | 2.9
5.2 | 1.9
3.2 | 1.0
1.0 | | Neo-Genesis Accuwell | 154 | 29.8 | 3.9 | 5.2 | 3.2
2.2 | 1.0 | | Delfia | 473 | 30.8 | 3.4 | 4.4 | -0.4 | 1.1 | | AutoDelfia | 30 | | | 5.9 | 3.8 | | | Bio-Rad Quantase | 20 | 28.6
26.1 | 5.8
2.2 | 2.2 | -0.8 | 1.0
1.1 | | Bayer Medical | 19 | 23.3 | 3.1 | 3.7 | -0.8
1.2 | 0.9 | | In house
Other | 20 | 23.3
29.1 | 4.0 | 5.7
5.4 | 4.7 | 1.0 | | | | | | | | | | Let 450 Enriched 50 ng/ml e | | | | | | | | | erum | | | | | | | MP Biomedicals (ICN) RIA | 20 | 54.1 | 4.7 | 6.1 | 1.9 | | | MP Biomedicals (ICN) RIA
Neo-Genesis Accuwell | 20
30 | 54.1 | 10.8 | 11.1 | 3.2 | 1.0 | | MP Biomedicals (ICN) RIA
Neo-Genesis Accuwell
Delfia | 20
30
157 |
54.1
58.7 | 10.8
6.9 | 11.1
9.6 | 3.2
2.2 | 1.0
1.1 | | MP Biomedicals (ICN) RIA
Neo-Genesis Accuwell
Delfia
AutoDelfia | 20
30
157
463 | 54.1
58.7
62.1 | 10.8
6.9
6.5 | 11.1
9.6
7.9 | 3.2
2.2
-0.4 | 1.0
1.1
1.2 | | MP Biomedicals (ICN) RIA
Neo-Genesis Accuwell
Delfia
AutoDelfia
Bio-Rad Quantase | 20
30
157
463
30 | 54.1
58.7
62.1
56.0 | 10.8
6.9
6.5
9.7 | 11.1
9.6
7.9
12.4 | 3.2
2.2
-0.4
3.8 | 1.0
1.1
1.2
1.0 | | MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase Bayer Medical | 20
30
157
463
30
20 | 54.1
58.7
62.1
56.0
51.4 | 10.8
6.9
6.5
9.7
4.8 | 11.1
9.6
7.9
12.4
4.8 | 3.2
2.2
-0.4
3.8
-0.8 | 1.0
1.1
1.2
1.0
1.1 | | MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase Bayer Medical In house | 20
30
157
463
30
20
20 | 54.1
58.7
62.1
56.0
51.4
46.6 | 10.8
6.9
6.5
9.7
4.8
4.1 | 11.1
9.6
7.9
12.4
4.8
4.1 | 3.2
2.2
-0.4
3.8
-0.8
1.2 | 1.2
1.0
1.1
0.9 | | Lot 452 - Enriched 50 ng/mL s MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase Bayer Medical In house Other | 20
30
157
463
30
20 | 54.1
58.7
62.1
56.0
51.4 | 10.8
6.9
6.5
9.7
4.8 | 11.1
9.6
7.9
12.4
4.8 | 3.2
2.2
-0.4
3.8
-0.8 | 1.0
1.1
1.2
1.0
1.1 | | MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase Bayer Medical In house | 20
30
157
463
30
20
20
30 | 54.1
58.7
62.1
56.0
51.4
46.6 | 10.8
6.9
6.5
9.7
4.8
4.1 | 11.1
9.6
7.9
12.4
4.8
4.1 | 3.2
2.2
-0.4
3.8
-0.8
1.2 | 1.0
1.1
1.2
1.0
1.1 | | MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase Bayer Medical In house Other | 20
30
157
463
30
20
20
30 | 54.1
58.7
62.1
56.0
51.4
46.6 | 10.8
6.9
6.5
9.7
4.8
4.1 | 11.1
9.6
7.9
12.4
4.8
4.1 | 3.2
2.2
-0.4
3.8
-0.8
1.2 | 1.0
1.1
1.2
1.0
1.1
0.9
1.0 | | MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase Bayer Medical In house Other | 20
30
157
463
30
20
20
30 | 54.1
58.7
62.1
56.0
51.4
46.6
53.3 | 10.8
6.9
6.5
9.7
4.8
4.1
7.1 | 11.1
9.6
7.9
12.4
4.8
4.1
9.2 | 3.2
2.2
-0.4
3.8
-0.8
1.2
4.7 | 1.0
1.1
1.2
1.0
1.1 | | MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase Bayer Medical In house Other Lot 453 - Enriched 100 ng/mL MP Biomedicals (ICN) RIA Neo-Genesis Accuwell | 20
30
157
463
30
20
20
30
serum | 54.1
58.7
62.1
56.0
51.4
46.6
53.3 | 10.8
6.9
6.5
9.7
4.8
4.1
7.1 | 11.1
9.6
7.9
12.4
4.8
4.1
9.2 | 3.2
2.2
-0.4
3.8
-0.8
1.2
4.7 | 1.0
1.1
1.2
1.0
1.1
0.9
1.0 | | MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase Bayer Medical In house Other Lot 453 - Enriched 100 ng/mL MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia | 20
30
157
463
30
20
20
30
serum
20
28 | 54.1
58.7
62.1
56.0
51.4
46.6
53.3 | 10.8
6.9
6.5
9.7
4.8
4.1
7.1 | 11.1
9.6
7.9
12.4
4.8
4.1
9.2 | 3.2
2.2
-0.4
3.8
-0.8
1.2
4.7 | 1.0
1.1
1.2
1.0
1.1
0.9
1.0 | | MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase Bayer Medical In house Other Lot 453 - Enriched 100 ng/mL MP Biomedicals (ICN) RIA | 20
30
157
463
30
20
20
30
serum
20
28
157 | 54.1
58.7
62.1
56.0
51.4
46.6
53.3 | 10.8
6.9
6.5
9.7
4.8
4.1
7.1 | 11.1
9.6
7.9
12.4
4.8
4.1
9.2
12.9
15.1
18.1 | 3.2
2.2
-0.4
3.8
-0.8
1.2
4.7 | 1.0
1.1
1.2
1.0
1.1
0.9
1.0
1.0 | | MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase Bayer Medical In house Other Lot 453 - Enriched 100 ng/mL MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase | 20
30
157
463
30
20
20
30
serum
20
28
157
469 | 54.1
58.7
62.1
56.0
51.4
46.6
53.3 | 10.8
6.9
6.5
9.7
4.8
4.1
7.1 | 11.1
9.6
7.9
12.4
4.8
4.1
9.2
12.9
15.1
18.1
15.7 | 3.2
2.2
-0.4
3.8
-0.8
1.2
4.7 | 1.0
1.1
1.2
1.0
1.1
0.9
1.0
1.0
1.1
1.1 | | MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia Bio-Rad Quantase Bayer Medical In house Other Lot 453 - Enriched 100 ng/mL MP Biomedicals (ICN) RIA Neo-Genesis Accuwell Delfia AutoDelfia | 20
30
157
463
30
20
20
30
serum
20
28
157
469
29 | 54.1
58.7
62.1
56.0
51.4
46.6
53.3
104.7
99.7
114.0
124.4
105.6 | 10.8
6.9
6.5
9.7
4.8
4.1
7.1 | 11.1
9.6
7.9
12.4
4.8
4.1
9.2
12.9
15.1
18.1
15.7
12.3 | 3.2
2.2
-0.4
3.8
-0.8
1.2
4.7 | 1.0
1.1
1.2
1.0
1.1
0.9
1.0
1.0
1.1
1.2
1.0 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### TOTAL GALACTOSE (mg Gal/dL whole blood) | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |---|--|---|---|---|---|---| | _ot 525 - Enriched 5 mg/dL whol | e blood | | | | | | | Fluorometric Manual | 136 | 5.4 | 0.6 | 0.9 | -0.4 | 1.1 | | Bioassay | 10 | 3.2 | 0.4 | 0.4 | -0.3 | 0.7 | | Colorimetric | 68 | 5.9 | 0.9 | 2.3 | -1.0 | 1.2 | | PerkinElmer Neonatal Kit | 12 | 4.6 | 0.7 | 0.9 | -0.8 | 1.1 | | Neo-Genesis Accuwell | 30 | 5.9 | 0.5 | 0.6 | -0.3 | 1.0 | | Bio-Rad Quantase | 193 | 5.7 | 0.9 | 1.5 | -1.6 | 1.3 | | MP Biomedicals (ICN) Enzyme | 40 | 8.9 | 0.9 | 1.5 | 2.1 | 1.4 | | Interscientific Enzyme | 10 | 6.5 | 0.3 | 0.3 | 1.3 | 1.0 | | Astoria-Pacific | 86 | 8.0 | 0.9 | 1.2 | 2.0 | 1.1 | | | | | | | | | | Other | 90 | 5.2 | 1.1 | 1.7 | 0.1 | 1.0 | | Other
_ot 526 - Enriched 10 mg/dL who | 90
ble blood | | 1.1 | | 0.1 | 1.0 | | Other
_ot 526 - Enriched 10 mg/dL who
Fluorometric Manual | 90
ble blood
135 | 10.5 | 1.1 | 1.4 | -0.4 | 1.1 | | Other
Lot 526 - Enriched 10 mg/dL who
Fluorometric Manual
Bioassay | 90
ble blood
135
10 | 10.5
6.9 | 1.1
1.1
0.7 | 1.4
0.7 | -0.4
-0.3 | 1.1
0.7 | | Other Lot 526 - Enriched 10 mg/dL who Fluorometric Manual Bioassay Colorimetric | 90
ble blood
135
10
67 | 10.5
6.9
11.5 | 1.1
1.1
0.7
1.8 | 1.4
0.7
3.0 | -0.4
-0.3
-1.0 | 1.1
0.7
1.2 | | Other Lot 526 - Enriched 10 mg/dL who Fluorometric Manual Bioassay Colorimetric PerkinElmer Neonatal Kit | 90
ble blood
135
10
67
12 | 10.5
6.9
11.5
11.1 | 1.1
1.1
0.7
1.8
1.2 | 1.4
0.7
3.0
1.2 | -0.4
-0.3
-1.0
-0.8 | 1.1
0.7
1.2
1.1 | | Other Lot 526 - Enriched 10 mg/dL who Fluorometric Manual Bioassay Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell | 90
135
10
67
12
30 | 10.5
6.9
11.5
11.1
10.2 | 1.1
0.7
1.8
1.2
1.1 | 1.4
0.7
3.0
1.2
1.2 | -0.4
-0.3
-1.0
-0.8
-0.3 | 1.1
0.7
1.2
1.1
1.0 | | Other Lot 526 - Enriched 10 mg/dL who Fluorometric Manual Bioassay Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Bio-Rad Quantase | 90
135
10
67
12
30
187 | 10.5
6.9
11.5
11.1
10.2
11.8 | 1.1
0.7
1.8
1.2
1.1
1.6 | 1.4
0.7
3.0
1.2
1.2
2.5 | -0.4
-0.3
-1.0
-0.8
-0.3
-1.6 | 1.1
0.7
1.2
1.1
1.0
1.3 | | Other Lot 526 - Enriched 10 mg/dL who Fluorometric Manual Bioassay Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Bio-Rad Quantase MP Biomedicals (ICN) Enzyme | 90
135
10
67
12
30
187
40 | 10.5
6.9
11.5
11.1
10.2
11.8
16.0 | 1.1
0.7
1.8
1.2
1.1
1.6
1.2 | 1.4
0.7
3.0
1.2
1.2
2.5
3.4 | -0.4
-0.3
-1.0
-0.8
-0.3
-1.6
2.1 | 1.1
0.7
1.2
1.1
1.0
1.3
1.4 | | Other Lot 526 - Enriched 10 mg/dL who Fluorometric Manual Bioassay Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Bio-Rad Quantase | 90
135
10
67
12
30
187 | 10.5
6.9
11.5
11.1
10.2
11.8 | 1.1
0.7
1.8
1.2
1.1
1.6 | 1.4
0.7
3.0
1.2
1.2
2.5 | -0.4
-0.3
-1.0
-0.8
-0.3
-1.6 | 1.1
0.7
1.2 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. # **TOTAL GALACTOSE** (mg Gal/dL whole blood) - continued - | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope |
---|--|--|--|---|---|---------------------------------| | Lot 527 - Enriched 15 mg/dL who | ole blood | | | | | | | Fluorometric Manual | 135 | 15.7 | 1.2 | 1.8 | -0.4 | 1.1 | | Bioassay | 10 | 9.8 | 0.9 | 0.9 | -0.3 | 0.7 | | Colorimetric | 68 | 16.2 | 2.5 | 4.9 | -1.0 | 1.2 | | PerkinElmer Neonatal Kit | 11 | 16.3 | 0.8 | 0.8 | -0.8 | 1.1 | | Neo-Genesis Accuwell | 30 | 13.7 | 2.2 | 2.2 | -0.3 | 1.0 | | Bio-Rad Quantase | 199 | 16.0 | 1.8 | 4.3 | -1.6 | 1.3 | | MP Biomedicals (ICN) Enzyme | 40 | 24.1 | 1.7 | 2.6 | 2.1 | 1.4 | | Interscientific Enzyme | 10 | 16.3 | 0.3 | 0.3 | 1.3 | 1.0 | | Astoria-Pacific | 88 | 18.5 | 1.4 | 1.9 | 2.0 | 1.1 | | Other | 90 | 14.3 | 2.2 | 5.2 | 0.1 | 1.0 | | | | | | | | | | Lot 528 - Enriched 30 mg/dL who | | | | | | | | Fluorometric Manual | 134 | 32.5 | 2.0 | 3.6 | -0.4 | 1.1 | | Fluorometric Manual
Bioassay | 134
10 | 20.7 | 0.6 | 0.6 | -0.3 | 0.7 | | Lot 528 - Enriched 30 mg/dL who
Fluorometric Manual
Bioassay
Colorimetric | 134
10
68 | 20.7
36.5 | 0.6
4.9 | 0.6
7.1 | -0.3
-1.0 | 0.7
1.2 | | Fluorometric Manual
Bioassay
Colorimetric
PerkinElmer Neonatal Kit | 134
10
68
12 | 20.7
36.5
33.5 | 0.6
4.9
2.3 | 0.6
7.1
7.6 | -0.3
-1.0
-0.8 | 0.7
1.2
1.1 | | Fluorometric Manual
Bioassay
Colorimetric
PerkinElmer Neonatal Kit
Neo-Genesis Accuwell | 134
10
68
12
30 | 20.7
36.5
33.5
31.8 | 0.6
4.9
2.3
3.7 | 0.6
7.1
7.6
6.1 | -0.3
-1.0
-0.8
-0.3 | 0.7
1.2
1.1
1.0 | | Fluorometric Manual Bioassay Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Bio-Rad Quantase | 134
10
68
12
30
191 | 20.7
36.5
33.5
31.8
38.0 | 0.6
4.9
2.3
3.7
4.1 | 0.6
7.1
7.6
6.1
7.2 | -0.3
-1.0
-0.8
-0.3
-1.6 | 0.7
1.2
1.1
1.0
1.3 | | Fluorometric Manual Bioassay Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Bio-Rad Quantase MP Biomedicals (ICN) Enzyme | 134
10
68
12
30
191
30 | 20.7
36.5
33.5
31.8
38.0
44.3 | 0.6
4.9
2.3
3.7
4.1
4.1 | 0.6
7.1
7.6
6.1
7.2
4.1 | -0.3
-1.0
-0.8
-0.3
-1.6
2.1 | 0.7
1.2
1.1
1.0
1.3 | | Fluorometric Manual Bioassay Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Bio-Rad Quantase MP Biomedicals (ICN) Enzyme Interscientific Enzyme | 134
10
68
12
30
191
30 | 20.7
36.5
33.5
31.8
38.0
44.3
32.3 | 0.6
4.9
2.3
3.7
4.1
4.1 | 0.6
7.1
7.6
6.1
7.2
4.1
1.7 | -0.3
-1.0
-0.8
-0.3
-1.6
2.1 | 0.7
1.2
1.1
1.0
1.3 | | Fluorometric Manual
Bioassay | 134
10
68
12
30
191
30 | 20.7
36.5
33.5
31.8
38.0
44.3 | 0.6
4.9
2.3
3.7
4.1
4.1 | 0.6
7.1
7.6
6.1
7.2
4.1 | -0.3
-1.0
-0.8
-0.3
-1.6
2.1 | 0.7
1.2
1.1
1.0 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. ### 2006 Quality Control Data Summaries of Statistical Analyses #### PHENYLALANINE (mg Phe/dL whole blood) | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |---|--|--|---|---|--|---| | - Induited | | | | | | | | _ot 525 - Nonenriched 0 mg/dL w | hole blo | bd | | | | | | Bacterial Inhibition Assays | 20 | 1.5 | 0.2 | 0.4 | 1.3 | 1.1 | | Fluorometric Manual | 89 | 2.1 | 0.2 | 0.4 | 2.0 | 1.0 | | Fluor Cont Flo, In house | 36 | 2.2 | 0.2 | 0.4 | 2.1 | 1.2 | | Fluor cont Flo, Kit | 69 | 1.8 | 0.2 | 0.3 | 1.8 | 1.1 | | Colorimetric | 78 | 1.9 | 0.3 | 0.4 | 1.8 | 1.3 | | PerkinElmer Neonatal Kit | 299 | 1.5 | 0.2 | 0.3 | 1.5 | 1.0 | | Neo-Genesis Accuwell | 30 | 1.9 | 0.2 | 0.2 | 1.4 | 1.1 | | Ani Labsystems | 50 | 1.7 | 0.3 | 0.7 | 1.6 | 1.1 | | Bio-Rad Quantase | 86 | 1.6 | 0.2 | 0.4 | 1.5 | 1.1 | | MP Biomedicals (ICN) Enzyme | 10 | 1.5 | 0.1 | 0.1 | 1.2 | 0.9 | | Interscientific Enzyme | 40 | 1.6 | 0.2 | 0.2 | 1.6 | 1.0 | | Astoria-Pacific | 19 | 2.8 | 0.2 | 0.2 | 2.7 | 1.3 | | Thin-layer Chromotography | 10 | 1.5 | 0.2 | 0.2 | 1.3 | 1.0 | | HPLC | 50 | 1.5 | 0.1 | 0.2 | 1.5 | 1.0 | | TecnoSuma UMTEST | 20 | 2.5 | 0.4 | 1.3 | 2.2 | 1.0 | | Derivatized-MS/MS Non-Kit | 640 | 1.6 | 0.2 | 0.3 | 1.6 | 1.0 | | Non-derivatized MS/MS Non-Kit | 89 | 1.8 | 0.2 | 0.4 | 1.7 | 1.1 | | Deriv-MS/MS PE NeoGram | 177 | 1.6 | 0.1 | 0.2 | 1.7 | 0.9 | | Non-deriv MS/MS PE NeoGram | 29 | 1.7 | 0.1 | 0.3 | 1.6 | 1.1 | | Other | 40 | 1.3 | 0.4 | 8.0 | 1.0 | 1.0 | | _ot 526 - Enriched 3 mg/dL whole | blood | | | | | | | Bacterial Inhibition Assays | 30 | 4.5 | 0.6 | 0.7 | 1.3 | 1.1 | | Fluorometric Manual | 88 | 5.2 | 0.4 | 0.5 | 2.0 | 1.0 | | Fluor Cont Flo, In house | 36 | 5.5 | 0.4 | 1.0 | 2.1 | | | | | | 0.4 | 1.0 | ۷.۱ | 1.2 | | Fluor cont Flo, Kit | 69 | 5.0 | 0.4 | 0.6 | 1.8 | 1.2
1.1 | | | 69
77 | 5.0
5.8 | | | | 1.1 | | Fluor cont Flo, Kit | | | 0.5 | 0.6 | 1.8 | 1.1
1.3 | | Fluor cont Flo, Kit
Colorimetric | 77 | 5.8 | 0.5
0.4 | 0.6
0.5 | 1.8
1.8 | 1.1
1.3
1.0 | | Fluor cont Flo, Kit
Colorimetric
PerkinElmer Neonatal Kit
Neo-Genesis Accuwell | 77
298 | 5.8
4.5
4.9 | 0.5
0.4
0.4
0.5 | 0.6
0.5
0.6
0.5 | 1.8
1.8
1.5
1.4 | 1.1
1.3
1.0
1.1 | | Fluor cont Flo, Kit
Colorimetric
PerkinElmer Neonatal Kit | 77
298
30 | 5.8
4.5 | 0.5
0.4
0.4 | 0.6
0.5
0.6 | 1.8
1.8
1.5 | 1.1
1.3
1.0
1.1 | | Fluor cont Flo, Kit
Colorimetric
PerkinElmer Neonatal Kit
Neo-Genesis Accuwell
Ani Labsystems
Bio-Rad Quantase | 77
298
30
50
86 | 5.8
4.5
4.9
4.8
4.7 | 0.5
0.4
0.4
0.5
0.4 | 0.6
0.5
0.6
0.5
0.6
0.6 | 1.8
1.8
1.5
1.4
1.6
1.5 | 1.1
1.3
1.0
1.1
1.1 | | Fluor cont Flo, Kit Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Ani Labsystems Bio-Rad Quantase MP Biomedicals (ICN) Enzyme | 77
298
30
50
86
20 | 5.8
4.5
4.9
4.8
4.7
4.0 | 0.5
0.4
0.4
0.5
0.4
0.4 | 0.6
0.5
0.6
0.5
0.6
0.6 | 1.8
1.8
1.5
1.4
1.6
1.5 | 1.1
1.3
1.0
1.1
1.1
0.9 | | Fluor cont Flo, Kit Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Ani Labsystems Bio-Rad Quantase MP Biomedicals (ICN) Enzyme Interscientific Enzyme | 77
298
30
50
86
20
39 | 5.8
4.5
4.9
4.8
4.7
4.0
4.9 | 0.5
0.4
0.5
0.4
0.4
0.6
0.4 | 0.6
0.5
0.6
0.5
0.6
0.6
0.6 | 1.8
1.8
1.5
1.4
1.6
1.5
1.2 | 1.1
1.3
1.0
1.1
1.1
0.9 | | Fluor cont Flo, Kit Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Ani Labsystems Bio-Rad Quantase MP Biomedicals (ICN) Enzyme Interscientific Enzyme Astoria-Pacific | 77
298
30
50
86
20
39 | 5.8
4.5
4.9
4.8
4.7
4.0
4.9
6.6 | 0.5
0.4
0.5
0.4
0.4
0.6
0.4
0.5 | 0.6
0.5
0.6
0.5
0.6
0.6
0.6
0.6 | 1.8
1.8
1.5
1.4
1.6
1.5
1.2
1.6
2.7 | 1.1
1.3
1.0
1.1
1.1
1.1
0.9
1.0 | | Fluor cont Flo, Kit Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Ani Labsystems Bio-Rad Quantase MP Biomedicals (ICN) Enzyme Interscientific Enzyme Astoria-Pacific Thin-layer Chromotography | 77
298
30
50
86
20
39
19 | 5.8
4.5
4.9
4.8
4.7
4.0
4.9
6.6
3.9 | 0.5
0.4
0.5
0.4
0.4
0.6
0.4
0.5
0.3 | 0.6
0.5
0.6
0.5
0.6
0.6
0.6
0.6
0.5 | 1.8
1.8
1.5
1.4
1.6
1.5
1.2
1.6
2.7 | 1.1
1.3
1.0
1.1
1.1
1.1
0.9
1.0
1.3 | | Fluor cont Flo, Kit Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Ani Labsystems Bio-Rad Quantase MP Biomedicals (ICN) Enzyme Interscientific Enzyme Astoria-Pacific Thin-layer Chromotography HPLC | 77
298
30
50
86
20
39
19
10
48 | 5.8
4.5
4.9
4.8
4.7
4.0
4.9
6.6
3.9
4.5 | 0.5
0.4
0.5
0.4
0.6
0.4
0.5
0.3 | 0.6
0.5
0.6
0.5
0.6
0.6
0.6
0.5
0.3 | 1.8
1.8
1.5
1.4
1.6
1.5
1.2
1.6
2.7
1.3 | 1.1
1.3
1.0
1.1
1.1
0.9
1.0
1.3
1.0 | | Fluor cont Flo, Kit Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Ani Labsystems Bio-Rad Quantase MP Biomedicals (ICN) Enzyme Interscientific Enzyme Astoria-Pacific Thin-layer Chromotography HPLC TecnoSuma UMTEST | 77
298
30
50
86
20
39
19
10
48
20 | 5.8
4.5
4.9
4.8
4.7
4.0
4.9
6.6
3.9
4.5
4.7 |
0.5
0.4
0.5
0.4
0.6
0.4
0.5
0.3
1.0 | 0.6
0.5
0.6
0.5
0.6
0.6
0.6
0.5
0.3
0.4
1.0 | 1.8
1.8
1.5
1.4
1.6
1.5
1.2
1.6
2.7
1.3
1.5
2.2 | 1.1
1.3
1.0
1.1
1.1
0.9
1.0
1.3
1.0 | | Fluor cont Flo, Kit Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Ani Labsystems Bio-Rad Quantase MP Biomedicals (ICN) Enzyme Interscientific Enzyme Astoria-Pacific Thin-layer Chromotography HPLC TecnoSuma UMTEST Derivatized-MS/MS Non-Kit | 77
298
30
50
86
20
39
19
10
48
20
640 | 5.8
4.5
4.9
4.8
4.7
4.0
4.9
6.6
3.9
4.5
4.7 | 0.5
0.4
0.5
0.4
0.6
0.4
0.5
0.3
0.3
1.0
0.4 | 0.6
0.5
0.6
0.5
0.6
0.6
0.6
0.5
0.3
0.4
1.0 | 1.8
1.8
1.5
1.4
1.6
1.5
1.2
1.6
2.7
1.3
1.5
2.2
1.6 | 1.1
1.3
1.0
1.1
1.1
0.9
1.0
1.3
1.0
1.0 | | Fluor cont Flo, Kit Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Ani Labsystems Bio-Rad Quantase MP Biomedicals (ICN) Enzyme Interscientific Enzyme Astoria-Pacific Thin-layer Chromotography HPLC TecnoSuma UMTEST Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit | 77
298
30
50
86
20
39
19
10
48
20
640
88 | 5.8
4.5
4.9
4.8
4.7
4.0
4.9
6.6
3.9
4.5
4.7
4.5 | 0.5
0.4
0.4
0.5
0.4
0.6
0.4
0.5
0.3
0.3
1.0
0.4
0.4 | 0.6
0.5
0.6
0.6
0.6
0.6
0.5
0.3
0.4
1.0
0.7 | 1.8
1.8
1.5
1.4
1.6
1.5
1.2
1.6
2.7
1.3
1.5
2.2
1.6
1.7 | 1.1
1.3
1.0
1.1
1.1
0.9
1.0
1.3
1.0
1.0
1.0 | | Fluor cont Flo, Kit Colorimetric PerkinElmer Neonatal Kit Neo-Genesis Accuwell Ani Labsystems Bio-Rad Quantase MP Biomedicals (ICN) Enzyme Interscientific Enzyme Astoria-Pacific Thin-layer Chromotography HPLC TecnoSuma UMTEST Derivatized-MS/MS Non-Kit | 77
298
30
50
86
20
39
19
10
48
20
640 | 5.8
4.5
4.9
4.8
4.7
4.0
4.9
6.6
3.9
4.5
4.7 | 0.5
0.4
0.5
0.4
0.6
0.4
0.5
0.3
0.3
1.0
0.4 | 0.6
0.5
0.6
0.5
0.6
0.6
0.6
0.5
0.3
0.4
1.0 | 1.8
1.8
1.5
1.4
1.6
1.5
1.2
1.6
2.7
1.3
1.5
2.2
1.6 | 1.1
1.3
1.0
1.1
1.1
0.9
1.0
1.3
1.0
1.0 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. # PHENYLALANINE (mg Phe/dL whole blood) - continued - | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |--|-----------|--------------|-----------------------------|------------|------------------|------------| | | | | | | | | | Lot 527 - Enriched 7 mg/dL whole | blood | | | | | | | Bacterial Inhibition Assays | 30 | 8.2 | 8.0 | 1.0 | 1.3 | 1.1 | | Fluorometric Manual | 90 | 9.0 | 0.6 | 8.0 | 2.0 | 1.0 | | Fluor Cont Flo, In house | 36 | 10.1 | 0.6 | 1.6 | 2.1 | 1.2 | | Fluor cont Flo, Kit | 70 | 9.5 | 0.7 | 8.0 | 1.8 | 1.1 | | Colorimetric | 77 | 10.1 | 8.0 | 1.1 | 1.8 | 1.3 | | PerkinElmer Neonatal Kit | 300 | 8.1 | 0.7 | 1.0 | 1.5 | 1.0 | | Neo-Genesis Accuwell | 30 | 7.6 | 1.1 | 1.3 | 1.4 | 1.1 | | Ani Labsystems | 47 | 9.5 | 8.0 | 1.3 | 1.6 | 1.1 | | Bio-Rad Quantase | 89 | 8.6 | 0.9 | 1.4 | 1.5 | 1.1 | | MP Biomedicals (ICN) Enzyme | 19 | 7.8 | 0.7 | 0.8 | 1.2 | 0.9 | | Interscientific Enzyme | 39 | 7.9 | 0.9 | 1.2 | 1.6 | 1.0 | | Astoria-Pacific | 20 | 11.9 | 0.5 | 1.3 | 2.7 | 1.3 | | Thin-layer Chromotography | 10 | 8.4 | 0.5 | 0.5 | 1.3 | 1.0 | | HPLC | 50 | 8.5 | 0.6 | 1.2 | 1.5 | 1.0 | | TecnoSuma UMTEST | 20 | 8.7 | 1.4 | 1.4 | 2.2 | 1.0 | | Derivatized-MS/MS Non-Kit | 638 | 8.3 | 0.8 | 1.4 | 1.6 | 1.0 | | Non-derivatized MS/MS Non-Kit | 89 | 9.3 | 0.8 | 2.3 | 1.7 | 1.1 | | Deriv-MS/MS PE NeoGram | 178 | 7.9 | 0.6 | 0.9 | 1.7 | 0.9 | | Non-deriv MS/MS PE NeoGram | 29 | 8.5 | 0.7 | 0.8 | 1.6 | 1.1 | | Other | 40 | 7.2 | 1.2 | 2.1 | 1.0 | 1.0 | | 500 5 | | | | | | | | Lot 528 - Enriched 11 mg/dL who | | | | | | | | Bacterial Inhibition Assays | 30 | 13.2 | 1.8 | 2.9 | 1.3 | 1.1 | | Fluorometric Manual | 88 | 13.4 | 1.0 | 1.4 | 2.0 | 1.0 | | Fluor Cont Flo, In house | 36 | 15.0 | 1.4 | 2.7 | 2.1 | 1.2 | | Fluor cont Flo, Kit | 70 | 14.0 | 1.2 | 1.4 | 1.8 | 1.1 | | Colorimetric | 77 | 16.2 | 0.9 | 1.3 | 1.8 | 1.3 | | PerkinElmer Neonatal Kit | 304 | 12.5 | 1.1 | 1.6 | 1.5 | 1.0 | | Neo-Genesis Accuwell | 29 | 14.4 | 8.0 | 0.8 | 1.4 | 1.1 | | Ani Labsystems | 52 | 13.8 | 1.6 | 2.0 | 1.6 | 1.1 | | Bio-Rad Quantase | 88 | 13.5 | 1.5 | 2.7 | 1.5 | 1.1 | | MP Biomedicals (ICN) Enzyme | 20 | 11.7 | 1.0 | 1.2 | 1.2 | 0.9 | | Interscientific Enzyme | 40 | 13.0 | 1.2 | 1.4 | 1.6 | 1.0 | | Astoria-Pacific | 20 | 17.6 | 0.8 | 1.9 | 2.7 | 1.3 | | Thin-layer Chromotography | 10 | 12.1 | 0.4 | 0.4 | 1.3 | 1.0 | | HPLC | 40 | 12.3 | 0.9 | 1.0 | 1.5 | 1.0 | | TIFLO | 19 | 13.1 | 1.3 | 1.7 | 2.2 | 1.0 | | TecnoSuma UMTEST | 19 | | | | | 4.0 | | TecnoSuma UMTEST | 643 | 12.4 | 1.1 | 2.2 | 1.6 | 1.0 | | | | | 1.1
1.1 | 2.2
3.4 | 1.6
1.7 | 1.0
1.1 | | TecnoSuma UMTEST
Derivatized-MS/MS Non-Kit | 643 | 12.4 | | | | | | TecnoSuma UMTEST
Derivatized-MS/MS Non-Kit
Non-derivatized MS/MS Non-Kit | 643
88 | 12.4
13.5 | 1.1 | 3.4 | 1.7 | 1.1 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. ### 2006 Quality Control Data Summaries of Statistical Analyses #### **LEUCINE** (mg Leu/dL whole blood) | | | | Average | | | | |----------------------------------|----------|------|------------------|----------|------------------|-------| | Method | N | Mean | Within
Lab SD | Total SD | Y-
Intercept* | Slope | | | | | | | | | | Lot 525 - Nonenriched 0 mg/dL w | hole blo | od | | | | | | Bacterial Inhibition Assays | 10 | 2.5 | 0.5 | 0.5 | 1.8 | 1.5 | | Bio-Rad Quantase | 20 | 3.4 | 0.5 | 0.5 | 3.0 | 1.3 | | Thin-layer Chromotography | 20 | 2.8 | 0.4 | 0.4 | 2.7 | 1.0 | | HPLC | 29 | 2.4 | 0.2 | 0.4 | 2.5 | 1.0 | | Derivatized-MS/MS Non-Kit | 585 | 2.8 | 0.3 | 0.5 | 2.6 | 1.0 | | Non-derivatized MS/MS Non-Kit | 60 | 3.2 | 0.3 | 0.5 | 3.0 | 1.0 | | Deriv-MS/MS PE NeoGram | 187 | 2.8 | 0.3 | 0.4 | 2.7 | 1.0 | | Non-deriv MS/MS PE NeoGram | 20 | 3.0 | 0.2 | 0.2 | 2.8 | 0.8 | | Other | 10 | 1.0 | 0.4 | 0.4 | 0.9 | 0.9 | | Lot 526 - Enriched 3 mg/dL whole | e blood | | | | | | | Bacterial Inhibition Assays | 9 | 7.0 | 0.0 | 0.0 | 1.8 | 1.5 | | Bio-Rad Quantase | 20 | 6.9 | 0.8 | 1.4 | 3.0 | 1.3 | | Thin-layer Chromotography | 20 | 5.4 | 0.5 | 0.5 | 2.7 | 1.0 | | HPLC | 29 | 5.6 | 0.6 | 0.6 | 2.5 | 1.0 | | Derivatized-MS/MS Non-Kit | 586 | 5.5 | 0.5 | 0.9 | 2.6 | 1.0 | | Non-derivatized MS/MS Non-Kit | 59 | 5.6 | 0.5 | 0.8 | 3.0 | 1.0 | | Deriv-MS/MS PE NeoGram | 193 | 5.6 | 0.5 | 0.7 | 2.7 | 1.0 | | Non-deriv MS/MS PE NeoGram | 20 | 5.1 | 0.5 | 0.5 | 2.8 | 0.8 | | Other | 10 | 3.3 | 8.0 | 8.0 | 0.9 | 0.9 | | Lot 527 - Enriched 7 mg/dL whole | e blood | | | | | | | Bacterial Inhibition Assays | 10 | 9.0 | 0.0 | 0.0 | 1.8 | 1.5 | | Bio-Rad Quantase | 20 | 10.5 | 1.7 | 3.2 | 3.0 | 1.3 | | Thin-layer Chromotography | 20 | 9.4 | 0.5 | 1.0 | 2.7 | 1.0 | | HPLC | 30 | 9.9 | 0.7 | 1.6 | 2.5 | 1.0 | | Derivatized-MS/MS Non-Kit | 591 | 9.7 | 0.9 | 1.6 | 2.6 | 1.0 | | Non-derivatized MS/MS Non-Kit | 60 | 9.8 | 0.9 | 1.6 | 3.0 | 1.0 | | Deriv-MS/MS PE NeoGram | 190 | 9.3 | 8.0 | 1.1 | 2.7 | 1.0 | | Non-deriv MS/MS PE NeoGram | 20 | 8.3 | 0.9 | 1.0 | 2.8 | 0.8 | | Other | 10 | 6.9 | 1.2 | 1.2 | 0.9 | 0.9 | | Lot 528 - Enriched 11 mg/dL who | le blood | | | | | | | Bacterial Inhibition Assays | 10 | 20.0 | 0.0 | 0.0 | 1.8 | 1.5 | | Bio-Rad Quantase | 18 | 17.6 | 1.3 | 5.1 | 3.0 | 1.3 | | Thin-layer Chromotography | 20 | 13.3 | 0.6 | 1.3 | 2.7 | 1.0 | | HPLC | 20 | 13.3 | 1.6 | 1.6 | 2.5 | 1.0 | | Derivatized-MS/MS Non-Kit | 585 | 14.0 | 1.3 | 2.4 | 2.6 | 1.0 | | Non-derivatized MS/MS Non-Kit | 60 | 13.5 | 1.6 | 2.8 | 3.0 | 1.0 | | Deriv-MS/MS PE NeoGram | 192 | 13.4 | 1.1 | 2.0 | 2.7 | 1.0 | | Non-deriv MS/MS PE NeoGram | 19 | 11.9 | 0.7 | 1.2 | 2.8 | 8.0 | | Other | 10 | 10.3 | 1.9 | 1.9 | 0.9 | 0.9 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses ## **METHIONINE** (mg Met/dL whole blood) | Mathad | N. | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |--|---|---|--|--|--|---| | Method | N | wiean | Lab 3D | | intercept | Siope | | Lot 525 - Nonenriched 0 mg/dL w | nole bloc | od | | | | | | Thin-Layer Chromotography | 10 | 0.0 | 0.0 | 0.0 | 0.1 | 0.7 | | HPLC | 30 | 0.3 | 0.1 | 0.1 | 0.2 | 0.8 | | Derivatized-MS/MS Non-Kit | 584 | 0.4 | 0.1 | 0.1 | 0.4 | 0.8 | | Non-derivatized MS/MS Non-Kit | 57 | 0.4 | 0.1 | 0.4 | 0.4 | 0.8 | | Deriv-MS/MS PE NeoGram | 182 | 0.5 | 0.1 | 0.1
| 0.4 | 0.9 | | Non-deriv MS/MS PE NeoGram | 20 | 0.4 | 0.1 | 0.1 | 0.3 | 0.7 | | Other | 10 | 0.5 | 0.3 | 0.3 | 0.6 | 0.5 | | Lot 526 - Enriched 1 mg/dL whole | blood | | | | | | | Thin-Layer Chromotography | 10 | 1.0 | 0.0 | 0.0 | 0.1 | 0.7 | | HPLC | 29 | 1.0 | 0.2 | 0.2 | 0.2 | 0.8 | | Derivatized-MS/MS Non-Kit | 585 | 1.2 | 0.1 | 0.2 | 0.4 | 0.8 | | Non-derivatized MS/MS Non-Kit | 59 | 1.2 | 0.3 | 0.4 | 0.4 | 0.8 | | Deriv-MS/MS PE NeoGram | 182 | 1.3 | 0.1 | 0.2 | 0.4 | 0.9 | | Non-deriv MS/MS PE NeoGram | 20 | 1.0 | 0.1 | 0.2 | 0.3 | 0.7 | | Other | 10 | 1.2 | 0.4 | 0.4 | 0.6 | 0.5 | | | | | | | | | | Lot 527 - Enriched 3 mg/dL whole | blood | | | | | | | Thin-Layer Chromotography | 10 | | | | | | | | 10 | 2.3 | 0.5 | 0.5 | 0.1 | 0.7 | | | 30 | 2.3
2.6 | 0.5
0.2 | 0.5
0.4 | 0.1
0.2 | 0.7
0.8 | | HPLC | | | | | | | | HPLC
Derivatized-MS/MS Non-Kit | 30 | 2.6 | 0.2 | 0.4 | 0.2 | 0.8 | | HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit | 30
581 | 2.6
2.9 | 0.2
0.3 | 0.4
0.4 | 0.2
0.4 | 0.8
0.8 | | HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram | 30
581
60 | 2.6
2.9
2.8 | 0.2
0.3
0.4 | 0.4
0.4
0.6 | 0.2
0.4
0.4 | 0.8
0.8
0.8 | | HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram Non-deriv MS/MS PE NeoGram | 30
581
60
182 | 2.6
2.9
2.8
2.9 | 0.2
0.3
0.4
0.3 | 0.4
0.4
0.6
0.4 | 0.2
0.4
0.4
0.4 | 0.8
0.8
0.8
0.9 | | HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram Non-deriv MS/MS PE NeoGram Other | 30
581
60
182
20
10 | 2.6
2.9
2.8
2.9
2.4 | 0.2
0.3
0.4
0.3
0.4 | 0.4
0.4
0.6
0.4
0.5 | 0.2
0.4
0.4
0.4
0.3 | 0.8
0.8
0.8
0.9 | | HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram Non-deriv MS/MS PE NeoGram Other Lot 528 - Enriched 6 mg/dL whole | 30
581
60
182
20
10 | 2.6
2.9
2.8
2.9
2.4
2.1 | 0.2
0.3
0.4
0.3
0.4
0.4 | 0.4
0.4
0.6
0.4
0.5
0.4 | 0.2
0.4
0.4
0.4
0.3
0.6 | 0.8
0.8
0.9
0.7
0.5 | | HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram Non-deriv MS/MS PE NeoGram Other Lot 528 - Enriched 6 mg/dL whole Thin-Layer Chromotography | 30
581
60
182
20
10
blood | 2.6
2.9
2.8
2.9
2.4
2.1 | 0.2
0.3
0.4
0.3
0.4
0.4 | 0.4
0.4
0.6
0.4
0.5
0.4 | 0.2
0.4
0.4
0.3
0.6 | 0.8
0.8
0.9
0.7
0.5 | | HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram Non-deriv MS/MS PE NeoGram Other Lot 528 - Enriched 6 mg/dL whole Thin-Layer Chromotography HPLC | 30
581
60
182
20
10
blood | 2.6
2.9
2.8
2.9
2.4
2.1 | 0.2
0.3
0.4
0.3
0.4
0.4 | 0.4
0.4
0.6
0.4
0.5
0.4 | 0.2
0.4
0.4
0.3
0.6 | 0.8
0.8
0.9
0.7
0.5 | | HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram Non-deriv MS/MS PE NeoGram Other Lot 528 - Enriched 6 mg/dL whole Thin-Layer Chromotography HPLC Derivatized-MS/MS Non-Kit | 30
581
60
182
20
10
blood
10
20
584 | 2.6
2.9
2.8
2.9
2.4
2.1
4.4
5.0
5.4 | 0.2
0.3
0.4
0.3
0.4
0.4 | 0.4
0.4
0.6
0.4
0.5
0.4
0.5
0.5
0.9 | 0.2
0.4
0.4
0.3
0.6
0.1
0.2
0.4 | 0.8
0.8
0.9
0.7
0.5 | | HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram Non-deriv MS/MS PE NeoGram Other Lot 528 - Enriched 6 mg/dL whole Thin-Layer Chromotography HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit | 30
581
60
182
20
10
blood
10
20
584
59 | 2.6
2.9
2.8
2.9
2.4
2.1
4.4
5.0
5.4
5.2 | 0.2
0.3
0.4
0.3
0.4
0.4
0.5
0.5
0.5
0.8 | 0.4
0.4
0.6
0.4
0.5
0.4
0.5
0.9
0.9 | 0.2
0.4
0.4
0.3
0.6
0.1
0.2
0.4
0.4 | 0.8
0.8
0.9
0.7
0.5 | | HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram Non-deriv MS/MS PE NeoGram Other Lot 528 - Enriched 6 mg/dL whole Thin-Layer Chromotography HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram | 30
581
60
182
20
10
blood
10
20
584
59
185 | 2.6
2.9
2.8
2.9
2.4
2.1
4.4
5.0
5.4
5.2
5.6 | 0.2
0.3
0.4
0.3
0.4
0.4
0.5
0.5
0.5
0.5
0.8
0.6 | 0.4
0.4
0.6
0.4
0.5
0.4
0.5
0.9
0.9
0.9 | 0.2
0.4
0.4
0.3
0.6
0.1
0.2
0.4
0.4
0.4 | 0.8
0.8
0.9
0.7
0.5
0.7
0.8
0.8
0.8 | | HPLC Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram Non-deriv MS/MS PE NeoGram | 30
581
60
182
20
10
blood
10
20
584
59 | 2.6
2.9
2.8
2.9
2.4
2.1
4.4
5.0
5.4
5.2 | 0.2
0.3
0.4
0.3
0.4
0.4
0.5
0.5
0.5
0.8 | 0.4
0.4
0.6
0.4
0.5
0.4
0.5
0.9
0.9 | 0.2
0.4
0.4
0.3
0.6
0.1
0.2
0.4
0.4 | 0.8
0.8
0.9
0.7
0.5 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. ### 2006 Quality Control Data Summaries of Statistical Analyses #### TYROSINE (mg Tyr/dL whole blood) | | | | Average | | | | |-----------------------------------|------------|------|------------------|------------|------------------|-------| | Method | N | Mean | Within
Lab SD | Total SD | Y-
Intercept* | Slope | | Lat 525 Nananrichad 0 mg/dL w | rhala blar | ad | | | | | | Lot 525 - Nonenriched 0 mg/dL w | | | | | | | | Fluorometric Manual | 10 | 2.3 | 0.3 | 0.3 | 2.1 | 1.1 | | Thin-Layer Chromotography | 10 | 1.0 | 0.2 | 0.2 | 0.9 | 0.9 | | HPLC | 40 | 1.2 | 0.1 | 0.2 | 1.3 | 0.9 | | Derivatized-MS/MS Non-Kit | 601 | 1.2 | 0.1 | 0.2 | 1.2 | 0.9 | | Non-derivatized MS/MS Non-Kit | 78 | 1.4 | 0.2 | 0.4 | 1.3 | 1.0 | | Deriv-MS/MS PE NeoGram | 187 | 1.2 | 0.1 | 0.2 | 1.2 | 0.9 | | Non-deriv MS/MS PE NeoGram | 22 | 1.2 | 0.1 | 0.2 | 1.1 | 0.7 | | Other | 10 | 1.3 | 0.5 | 0.5 | 1.3 | 0.6 | | Lot 526 - Enriched 1 mg/dL whole | e blood | | | | | | | Fluorometric Manual | 10 | 3.3 | 0.5 | 0.5 | 2.1 | 1.1 | | Thin-Layer Chromotography | 10 | 1.8 | 0.2 | 0.2 | 0.9 | 0.9 | | HPLC | 40 | 2.2 | 0.2 | 0.5 | 1.3 | 0.9 | | Derivatized-MS/MS Non-Kit | 601 | 2.0 | 0.2 | 0.3 | 1.2 | 0.9 | | Non-derivatized MS/MS Non-Kit | 79 | 2.1 | 0.3 | 0.6 | 1.3 | 1.0 | | Deriv-MS/MS PE NeoGram | 190 | 2.1 | 0.2 | 0.3 | 1.2 | 0.9 | | Non-deriv MS/MS PE NeoGram | 22 | 1.8 | 0.1 | 0.2 | 1.1 | 0.7 | | Other | 10 | 1.8 | 0.7 | 0.7 | 1.3 | 0.6 | | Lot 527 - Enriched 3 mg/dL whole | e blood | | | | | | | Fluorometric Manual | 10 | 5.0 | 0.5 | 0.5 | 2.1 | 1.1 | | Thin-Layer Chromotography | 10 | 3.2 | 0.4 | 0.4 | 0.9 | 0.9 | | HPLC | 38 | 4.0 | 0.2 | 0.9 | 1.3 | 0.9 | | Derivatized-MS/MS Non-Kit | 609 | 3.8 | 0.4 | 0.7 | 1.2 | 0.9 | | Non-derivatized MS/MS Non-Kit | 80 | 4.2 | 0.5 | 1.0 | 1.3 | 1.0 | | Deriv-MS/MS PE NeoGram | 192 | 3.8 | 0.4 | 0.6 | 1.2 | 0.9 | | Non-deriv MS/MS PE NeoGram | 22 | 3.3 | 0.3 | 0.3 | 1.1 | 0.7 | | Other | 10 | 3.2 | 0.7 | 0.7 | 1.3 | 0.6 | | Lot 528 - Enriched 8 mg/dL whole | hlood | | | | | | | Fluorometric Manual | | 10.0 | 0.0 | 0.0 | 0.4 | 1 1 | | | 10 | 10.9 | 0.9 | 0.9 | 2.1 | 1.1 | | Thin-Layer Chromotography
HPLC | 10 | 7.8 | 0.9 | 0.9 | 0.9 | 0.9 | | Derivatized-MS/MS Non-Kit | 30 | 8.1 | 0.6 | 1.4 | 1.3 | 0.9 | | Non-derivatized MS/MS Non-Kit | 608 | 8.3 | 0.8 | 1.6 | 1.2 | 0.9 | | Deriv-MS/MS PE NeoGram | 80 | 8.9 | 1.1 | 2.3 | 1.3 | 1.0 | | Non-deriv MS/MS PE NeoGram | 188 | 8.4 | 0.9 | 1.2 | 1.2 | 0.9 | | Other | 22
10 | 7.0 | 0.4 | 0.4
1.3 | 1.1
1.3 | 0.7 | | Ouiei | 10 | 5.8 | 1.3 | 1.3 | 1.3 | 0.6 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses **VALINE** (mg Val/dL whole blood) | Method N Mean Lab SD Total SD Intercept* Slope | | | | Average | | | |
--|----------------------------------|----------|------|------------------|----------|------------------|-------| | Thin-Layer Chromotography 20 1.3 0.2 0.4 1.3 0.7 HPLC 30 2.2 0.2 0.3 2.4 0.9 Derivatized-MS/MS Non-Kit 511 2.0 0.2 0.5 1.9 0.8 Non-derivatized MS/MS Non-Kit 49 1.8 0.1 0.4 1.8 0.7 Deriv-MS/MS PE NeoGram 164 2.1 0.3 0.5 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 2.2 0.1 0.3 2.1 0.7 Other 10 2.4 0.6 0.6 2.7 0.8 Non-deriv MS/MS PE NeoGram 20 2.2 0.1 0.3 2.1 0.7 Other 10 2.4 0.6 0.6 2.7 0.8 Non-deriv MS/MS Non-Kit 516 2.7 0.3 0.5 2.4 0.9 Deriv-MS/MS Non-Kit 516 2.7 0.3 0.7 1.9 0.8 Non-derivatized MS/MS Non-Kit 49 2.4 0.2 0.5 1.8 0.7 0.9 Other MS/MS PE NeoGram 166 2.8 0.3 0.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 2.7 0.2 0.3 2.1 0.7 Other 10 3.8 1.0 1.0 2.7 0.8 Non-derivatized MS/MS Non-Kit 516 2.8 0.3 0.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 2.7 0.2 0.3 2.1 0.7 Other 10 3.8 1.0 1.0 2.7 0.8 Non-derivatized MS/MS Non-Kit 514 4.3 0.5 1.0 1.0 2.7 0.8 Non-derivatized MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.8 Non-derivatized MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 | Method | N | Mean | Within
Lab SD | Total SD | Y-
Intercept* | Slope | | Thin-Layer Chromotography 20 1.3 0.2 0.4 1.3 0.7 HPLC 30 2.2 0.2 0.3 2.4 0.9 Derivatized-MS/MS Non-Kit 511 2.0 0.2 0.5 1.9 0.8 Non-derivatized MS/MS Non-Kit 49 1.8 0.1 0.4 1.8 0.7 Deriv-MS/MS PE NeoGram 164 2.1 0.3 0.5 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 2.2 0.1 0.3 2.1 0.7 Other 10 2.4 0.6 0.6 2.7 0.8 Derivatized MS/MS Non-Kit 516 2.7 0.3 0.5 2.4 0.9 Derivatized MS/MS Non-Kit 516 2.7 0.3 0.7 1.9 0.8 Non-deriv MS/MS PE NeoGram 166 2.8 0.3 0.7 1.9 0.8 Non-deriv MS/MS PE NeoGram 166 2.8 0.3 0.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 168 2.8 0.3 0.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 10 3.8 1.0 1.0 2.7 0.8 Derivatized-MS/MS Non-Kit 514 4.3 0.5 1.0 1.0 2.7 0.8 Non-derivatized MS/MS Non-Kit 514 4.3 0.5 1.0 1.0 2.7 0.8 Non-derivatized MS/MS Non-Kit 514 4.3 0.5 1.0 1.0 2.7 0.8 Non-derivatized MS/MS Non-Kit 514 4.3 0.5 1.0 1.0 2.7 0.8 Non-derivatized MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.6 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.6 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.6 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.6 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 0.6 Non-derivatized MS/MS Non-Kit 51 0.7 0.8 1.8 1.3 0.7 0.8 Non-derivatized MS/MS Non-Kit 51 0.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 51 0.7 0.8 1.6 1.3 1.8 0.7 0.5 Non-derivatized MS/MS Non-Kit 51 0.7 0.8 1.6 1.3 1.8 0.7 0.5 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 0.5 Non-derivatized MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-derivatized MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-derivatized MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-derivatized MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-derivatized MS/MS PE | Lat FOE Name wished Own will u | ملط ملمط | - d | | | | | | HPLC 30 2.2 0.2 0.3 2.4 0.9 Derivatized-MS/MS Non-Kit 511 2.0 0.2 0.5 1.9 0.8 Non-derivatized MS/MS Non-Kit 49 1.8 0.1 0.4 1.8 0.7 Deriv-MS/MS PE NeoGram 164 2.1 0.3 0.5 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 2.2 0.1 0.3 2.1 0.7 Other 10 2.4 0.6 0.6 2.7 0.8 Lot 526 - Enriched 1 mg/dL whole blood Thin-Layer Chromotography 20 2.2 0.4 0.4 1.3 0.7 Deriv-MS/MS PE NeoGram 166 2.7 0.3 0.5 2.4 0.9 Derivatized-MS/MS Non-Kit 516 2.7 0.3 0.7 1.9 0.8 Non-derivatized MS/MS Non-Kit 49 2.4 0.2 0.5 1.8 0.7 Deriv-MS/MS PE NeoGram 166 2.8 0.3 0.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 2.7 0.2 0.3 2.1 0.7 Other 10 3.8 1.0 1.0 2.7 0.8 Lot 527 - Enriched 3 mg/dL whole blood Thin-Layer Chromotography 20 3.2 0.4 0.6 1.3 0.7 Deriv-MS/MS PE NeoGram 20 2.7 0.2 0.3 2.1 0.7 Other 10 3.8 1.0 1.0 2.7 0.8 Lot 527 - Enriched 3 mg/dL whole blood Thin-Layer Chromotography 20 3.2 0.4 0.6 1.3 0.7 HPLC 30 5.2 0.5 1.1 2.4 0.9 Derivatized-MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 | | | | | | | | | Derivatized-MS/MS Non-Kit 511 2.0 0.2 0.5 1.9 0.8 | | | | | | | 0.7 | | Non-derivatized MS/MS Non-Kit 49 1.8 0.1 0.4 1.8 0.7 Deriv-MS/MS PE NeoGram 164 2.1 0.3 0.5 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 2.2 0.1 0.3 2.1 0.7 Other 10 2.4 0.6 0.6 0.6 2.7 0.8 Lot 526 - Enriched 1 mg/dL whole blood Thin-Layer Chromotography 20 2.2 0.4 0.4 1.3 0.7 HPLC 30 3.3 0.5 2.4 0.9 Derivatized-MS/MS Non-Kit 516 2.7 0.3 0.7 1.9 0.8 Non-derivatized MS/MS Non-Kit 49 2.4 0.2 0.5 1.8 0.7 Deriv-MS/MS PE NeoGram 166 2.8 0.3 0.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 2.7 0.2 0.3 2.1 0.7 Other 10 3.8 1.0 1.0 2.7 0.8 Lot 527 - Enriched 3 mg/dL whole blood Thin-Layer Chromotography 20 3.2 0.4 0.6 1.3 0.7 HPLC 30 5.2 0.5 1.1 2.4 0.9 Derivatized-MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-derivatized MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Derivatized-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Deniv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Deniv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Deniv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Deniv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Deniv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Deniv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Deniv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Deniv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Deniv-MS/MS PE NeoGram 164 6.9 0.9 0.5 0.8 2.1 0.7 | | | | | | | | | Deriv-MS/MS PE
NeoGram 164 2.1 0.3 0.5 2.0 0.8 | | | | | | | | | Non-deriv MS/MS PE NeoGram 20 2.2 0.1 0.3 2.1 0.7 Other 10 2.4 0.6 0.6 0.6 2.7 0.8 Other 10 2.4 0.4 0.4 1.3 0.7 Other 10 2.2 0.4 0.4 0.4 1.3 0.7 Other 10 2.4 0.9 Other 20 2.2 0.4 0.4 0.4 1.3 0.7 Other 10 2.7 0.3 0.7 1.9 0.8 Other 20 2.7 0.3 0.7 1.9 0.8 Other 20 2.7 0.3 0.7 1.9 0.8 Other 20 2.7 0.2 0.5 1.8 0.7 0.9 Other 10 3.8 0.7 0.2 0.3 0.7 0.0 0.8 Other 10 3.8 1.0 1.0 0.7 0.8 Other 10 3.8 0.5 1.1 0.4 0.5 0.7 0.8 Other 10 3.9 0.5 1.1 0.4 0.5 0.7 0.9 Other 10 3.9 0.5 1.0 1.9 0.8 0.8 0.7 0.7 0.9 Other 10 5.1 0.8 0.8 0.7 0.5 0.7 0.1 0.7 Other 10 5.1 0.8 0.8 0.7 0.5 0.7 0.8 Other 10 5.1 0.8 0.8 0.7 0.8 Other 10 5.1 0.8 0.8 0.7 0.8 Other 10 5.1 0.8 0.8 0.7 0.8 Other 10 5.1 0.8 5.2 0.8 0.8 0.7 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8 0.7 0.8 | | | | | | | | | Derivalized Ms/Ms Non-Kit State | | | | | | | | | Lot 526 - Enriched 1 mg/dL whole blood Thin-Layer Chromotography 20 2.2 0.4 0.4 1.3 0.7 d.PLC 30 3.3 0.3 0.5 2.4 0.9 0.9 d.PLC 30 3.3 0.3 0.5 2.4 0.9 0.9 d.PLC 30 3.3 0.3 0.5 2.4 0.9 0.9 d.PLC 30 0.5 1.8 0.7 1.9 0.8 0.9 d.PLC 0.5 1.8 0.7 0.9 0.8 0.9 d.PLC 0.5 1.8 0.7 0.9 0.8 0.9 d.PLC 0.5 0.5 1.8 0.7 0.9 0.8 0.9 d.PLC 0.5 0.3 0.7 0.9 0.8 0.9 d.PLC 0.9 0.3 0.7 0.9 0.8 0.9 d.PLC 0.9 0.3 0.7 0.9 0.8 0.9 d.PLC 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 | | | | | | | | | Thin-Layer Chromotography 20 2.2 0.4 0.4 1.3 0.7 dPLC 30 3.3 0.3 0.5 2.4 0.9 Derivatized-MS/MS Non-Kit 516 2.7 0.3 0.7 1.9 0.8 Non-derivatized MS/MS Non-Kit 49 2.4 0.2 0.5 1.8 0.7 2.0 0.8 Non-derivatized MS/MS PE NeoGram 166 2.8 0.3 0.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 2.7 0.2 0.3 2.1 0.7 Dther 10 3.8 1.0 1.0 2.7 0.8 Deriv-MS/MS PE NeoGram 20 3.2 0.4 0.6 1.3 0.7 0.8 Derivatized-MS/MS Non-Kit 514 4.3 0.5 1.1 2.4 0.9 Derivatized-MS/MS Non-Kit 50 3.9 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Dther 10 5.1 0.8 0.8 2.7 0.8 Derivatized-MS/MS Non-Kit 51 0.7 2.1 0.7 Dther 10 5.1 0.8 0.8 1.6 1.9 0.8 Derivatized-MS/MS Non-Kit 51 0.7 2.1 0.7 0.8 Derivatized-MS/MS Non-Kit 51 0.7 0.8 1.6 1.9 0.8 Derivatized-MS/MS Non-Kit 51 0.7 0.8 1.6 1.9 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 0.9 0.9 1.7 2.0 0.8 Deriv-MS/MS PE NeoGram 164 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 | Jiner | 10 | 2.4 | 0.6 | 0.6 | 2.7 | 0.8 | | HPLC | Lot 526 - Enriched 1 mg/dL whole | e blood | | | | | | | HPLC 30 3.3 0.3 0.5 2.4 0.9 Derivatized-MS/MS Non-Kit 516 2.7 0.3 0.7 1.9 0.8 Non-derivatized MS/MS Non-Kit 49 2.4 0.2 0.5 1.8 0.7 Deriv-MS/MS PE NeoGram 166 2.8 0.3 0.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 2.7 0.2 0.3 2.1 0.7 Dther 10 3.8 1.0 1.0 2.7 0.8 Lot 527 - Enriched 3 mg/dL whole blood Thin-Layer Chromotography 20 3.2 0.4 0.6 1.3 0.7 HPLC 30 5.2 0.5 1.1 2.4 0.9 Derivatized-MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 Derivatized-MS/MS Non-Kit 511 0.8 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 Derivatized-MS/MS Non-Kit 511 0.8 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 0.5 0.8 2.1 0.7 | Thin-Layer Chromotography | 20 | 2.2 | 0.4 | 0.4 | 1.3 | 0.7 | | Non-derivatized MS/MS Non-Kit 49 2.4 0.2 0.5 1.8 0.7 | | 30 | 3.3 | 0.3 | 0.5 | 2.4 | 0.9 | | Deriv-MS/MS PE NeoGram 166 2.8 0.3 0.7 2.0 0.8 | Derivatized-MS/MS Non-Kit | 516 | 2.7 | 0.3 | 0.7 | 1.9 | 0.8 | | Non-deriv MS/MS PE NeoGram 20 2.7 0.2 0.3 2.1 0.7 Other 10 3.8 1.0 1.0 2.7 0.8 Lot 527 - Enriched 3 mg/dL whole blood Thin-Layer Chromotography 20 3.2 0.4 0.6 1.3 0.7 HPLC 30 5.2 0.5 1.1 2.4 0.5 Derivatized-MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.5 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | Non-derivatized MS/MS Non-Kit | 49 | 2.4 | 0.2 | 0.5 | 1.8 | 0.7 | | Other 10 3.8 1.0 1.0 2.7 0.8 Lot 527 - Enriched 3 mg/dL whole blood Thin-Layer Chromotography 20 3.2 0.4 0.6 1.3 0.7 HPLC 30 5.2 0.5 1.1 2.4 0.9 Derivatized-MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 7.5 0.7 1.0 2.4 0.9 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 | Deriv-MS/MS PE NeoGram | 166 | 2.8 | 0.3 | 0.7 | 2.0 | 8.0 | | Lot 527 - Enriched 3 mg/dL whole blood Thin-Layer Chromotography 20 3.2 0.4 0.6 1.3 0.7 HPLC 30 5.2 0.5 1.1 2.4 0.9 Derivatized-MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | Non-deriv MS/MS PE NeoGram | 20 | 2.7 | 0.2 | 0.3 | 2.1 | 0.7 | | Thin-Layer Chromotography 20 3.2 0.4 0.6 1.3 0.7 HPLC 30 5.2 0.5 1.1 2.4 0.9 Derivatized-MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | Other | 10 | 3.8 | 1.0 | 1.0 | 2.7 | 8.0 | | HPLC 30 5.2 0.5 1.1 2.4 0.9 Derivatized-MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood 5.1 0.8 0.8 2.7 0.8 HPLC 20 7.5 0.7 1.0 2.4 0.9 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Non-deriv MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS | Lot 527 - Enriched 3 mg/dL whol | e blood | | | | | | | HPLC 30 5.2 0.5 1.1 2.4 0.9 Derivatized-MS/MS Non-Kit 514 4.3 0.5 1.0 1.9 0.8 Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | Thin-Layer Chromotography | 20 | 3.2 | 0.4 | 0.6 | 1.3 | 0.7 | | Non-derivatized MS/MS Non-Kit 50 3.9 0.5 1.0 1.8 0.7 Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | | 30 | 5.2 | 0.5 | 1.1 | 2.4 | 0.9 | | Deriv-MS/MS PE NeoGram 163 4.4 0.5 1.0 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Enriched 6 mg/dL whole blood 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7
1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | Derivatized-MS/MS Non-Kit | 514 | 4.3 | 0.5 | 1.0 | 1.9 | 0.8 | | Non-deriv MS/MS PE NeoGram 20 4.0 0.5 0.7 2.1 0.7 Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | Non-derivatized MS/MS Non-Kit | 50 | 3.9 | 0.5 | 1.0 | 1.8 | 0.7 | | Other 10 5.1 0.8 0.8 2.7 0.8 Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | Deriv-MS/MS PE NeoGram | 163 | 4.4 | 0.5 | 1.0 | 2.0 | 0.8 | | Lot 528 - Enriched 6 mg/dL whole blood Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | Non-deriv MS/MS PE NeoGram | 20 | 4.0 | 0.5 | 0.7 | 2.1 | 0.7 | | Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | Other | 10 | 5.1 | 0.8 | 0.8 | 2.7 | 8.0 | | Thin-Layer Chromotography 20 5.6 0.5 1.8 1.3 0.7 HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | Lot 528 - Enriched 6 mg/dL whol | e blood | | | | | | | HPLC 20 7.5 0.7 1.0 2.4 0.9 Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | | | 5.6 | 0.5 | 1 Ω | 1 2 | 0.7 | | Derivatized-MS/MS Non-Kit 511 6.7 0.8 1.6 1.9 0.8 Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | | | | | | | | | Non-derivatized MS/MS Non-Kit 48 5.8 0.6 1.3 1.8 0.7 Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | | | | | | | | | Deriv-MS/MS PE NeoGram 164 6.9 0.9 1.7 2.0 0.8 Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | | | | | | | | | Non-deriv MS/MS PE NeoGram 20 6.3 0.5 0.8 2.1 0.7 | | | | | | | | | | | | | | | | | | | Other | 10 | 7.5 | 1.4 | 1.4 | 2.7 | 0.7 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### **CITRULLINE** (mg Cit/dL whole blood) | | | •• | Average
Within | Total SD | Y- | Cla | |----------------------------------|-----------|------|-------------------|----------|------------|-------| | Method | N | Mean | Lab SD | Total OD | Intercept* | Slope | | Lot 525 - Nonenriched 0 mg/dL w | hole bloc | od | | | | | | Thin-Layer Chromotography | 12 | 0.0 | 0.0 | 0.0 | 0.2 | 0.6 | | Derivatized-MS/MS Non-Kit | 539 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | | Non-derivatized MS/MS Non-Kit | 49 | 0.4 | 0.1 | 0.1 | 0.4 | 0.7 | | Deriv-MS/MS PE NeoGram | 178 | 0.5 | 0.0 | 0.1 | 0.6 | 0.9 | | Non-deriv MS/MS PE NeoGram | 20 | 0.8 | 0.2 | 0.2 | 0.7 | 1.0 | | Other | 10 | 0.7 | 0.3 | 0.3 | 0.7 | 0.7 | | Lot 526 - Enriched 1 mg/dL whole | e blood | | | | | | | Thin-Layer Chromotography | 12 | 1.0 | 0.0 | 0.0 | 0.2 | 0.6 | | Derivatized-MS/MS Non-Kit | 543 | 1.1 | 0.1 | 0.3 | 0.4 | 0.7 | | Non-derivatized MS/MS Non-Kit | 50 | 1.1 | 0.1 | 0.2 | 0.4 | 0.7 | | Deriv-MS/MS PE NeoGram | 180 | 1.5 | 0.1 | 0.2 | 0.6 | 0.9 | | Non-deriv MS/MS PE NeoGram | 20 | 1.7 | 0.3 | 0.3 | 0.7 | 1.0 | | Other | 9 | 1.4 | 0.4 | 0.4 | 0.7 | 0.7 | | | | | | | | | | | | | | | | | | Lot 527 - Enriched 3 mg/dL whole | blood | | | | | | | Thin-Layer Chromotography | 12 | 2.0 | 0.0 | 0.0 | 0.2 | 0.6 | | Derivatized-MS/MS Non-Kit | 550 | 2.4 | 0.3 | 0.7 | 0.4 | 0.7 | | Non-derivatized MS/MS Non-Kit | 50 | 2.5 | 0.3 | 0.5 | 0.4 | 0.7 | | Deriv-MS/MS PE NeoGram | 175 | 3.2 | 0.2 | 0.5 | 0.6 | 0.9 | | Non-deriv MS/MS PE NeoGram | 20 | 3.6 | 0.6 | 0.6 | 0.7 | 1.0 | | Other | 10 | 2.9 | 0.8 | 0.8 | 0.7 | 0.7 | | | | | | | | | | | | | | | | | | Lat FOO Family and Committee | ا ماما م | | | | | | | Lot 528 - Enriched 6 mg/dL whole | e blood | | | | | | | Thin-Layer Chromotography | 12 | 3.8 | 0.4 | 0.4 | 0.2 | 0.6 | | Derivatized-MS/MS Non-Kit | 546 | 4.4 | 0.5 | 1.3 | 0.4 | 0.7 | | Non-derivatized MS/MS Non-Kit | 50 | 4.5 | 0.6 | 1.0 | 0.4 | 0.7 | | Deriv-MS/MS PE NeoGram | 175 | 6.0 | 0.4 | 1.0 | 0.6 | 0.9 | | Non-deriv MS/MS PE NeoGram | 19 | 6.5 | 0.8 | 8.0 | 0.7 | 1.0 | | Other | 10 | 4.9 | 1.5 | 1.5 | 0.7 | 0.7 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### PROPIONYLCARNITINE (µmol C3/L whole blood) | | | | Average
Within | | Y- | | |--|-----------|-------|-------------------|--------------|------------|-------| | Method | N | Mean | Lab SD | Total SD | Intercept* | Slope | | | | | | | | | | Lot 565 - Nonenriched 0 μ mol/L ν | whole blo | ood | | | | | | Derivatized-MS/MS Non-Kit | 660 | 1.56 | 0.22 | 0.29 | 1.56 | 1.14 | | Non-derivatized MS/MS Non-Kit | 49 | 1.50 | 0.18 | 0.32 | 1.33 | 1.20 | | Deriv-MS/MS PE NeoGram | 177 | 1.37 | 0.14 | 0.22 | 1.25 | 1.05 | | Non-deriv MS/MS PE NeoGram | 48 | 1.31 | 0.24 | 0.31 | 1.27 | 1.02 | | Lot 566 - Enriched 3 μmol/L who | le blood | | | | | | | Derivatized-MS/MS Non-Kit | 676 | 4.94 | 0.72 | 0.95 | 1.56 | 1.14 | | Non-derivatized MS/MS Non-Kit | 50 | 4.88 | 0.60 | 1.03 | 1.33 | 1.20 | | Deriv-MS/MS PE NeoGram | 180 | 4.37 | 0.35 | 0.69 | 1.25 | 1.05 | | Non-deriv MS/MS PE NeoGram | 50 | 4.13 | 0.59 | 0.84 | 1.27 | 1.02 | | Lot 567 - Enriched 7.5 μmol/L wh | | | | | | | | Derivatized-MS/MS Non-Kit | 666 | 10.13 | 1.17 | 1.83 | 1.56 | 1.14 | | Non-derivatized MS/MS Non-Kit | 50 | 9.96 | 1.24 | 1.83 | 1.33 | 1.20 | | Deriv-MS/MS PE NeoGram | 177 | 8.90 | 0.73 | 1.28 | 1.25 | 1.05 | | Non-deriv MS/MS PE NeoGram | 51 | 9.23 | 1.19 | 1.35 | 1.27 | 1.02 | | Lot 568 - Enriched 12 μmol/L who | ole blood | d | | | | | | | 660 | 15.15 | 1.82 | 2.91 | 1.56 | 1.14 | | Derivatized-MS/MS Non-Kit | | | | | | | | Derivatized-MS/MS Non-Kit
Non-derivatized MS/MS Non-Kit | 50 | 15.93 | 2.05 | 3.77 | 1.33 | 1.20 | | Derivatized-MS/MS Non-Kit
Non-derivatized MS/MS Non-Kit
Deriv-MS/MS PE NeoGram | | | 2.05
1.05 | 3.77
2.15 | | | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### **BUTYRYLCARNITINE** (µmol C4/L whole blood) | Method | | Mean | Within
Lab SD | Total SD | Y-
Intercept* | Slope | |----------------------------------|-----------|--------|------------------|----------|------------------|-------| | | N | Wicuii | | | пистосри | 0.000 | | Lot 565 - Nonenriched 0 μmol/L | whole blo | ood | | | | | | Derivatized-MS/MS Non-Kit | 639 | 0.20 | 0.05 | 0.08 | 0.19 | 0.97 | | Non-derivatized MS/MS Non-Kit | 49 | 0.20 | 0.06 | 0.10 | 0.17 | 0.88 | | Deriv-MS/MS PE NeoGram | 180 | 0.21 | 0.07 | 0.08 | 0.16 | 0.84 | | Non-deriv MS/MS PE NeoGram | 48 | 0.18 | 0.07 | 0.08 | 0.19 | 0.82 | | Lot 566 - Enriched 1 μmol/L who | le blood | | | | | | | Derivatized-MS/MS Non-Kit | 641 | 1.17 | 0.16 | 0.23 | 0.19 | 0.97 | | Non-derivatized MS/MS Non-Kit | 50 | 1.04 | 0.14 | 0.23 | 0.17 | 0.88 | | Deriv-MS/MS PE NeoGram | 175 | 1.00 | 0.19 | 0.24 | 0.19 | 0.84 | | Non-deriv MS/MS PE NeoGram | 48 | 1.01 | 0.21 | 0.21 | 0.19 | 0.82 | | Lot 567 - Enriched 2.5 μmol/L wl | | | | | | | | Derivatized-MS/MS Non-Kit | 639 | 2.62 | 0.31 | 0.43 | 0.19 | 0.97 | | Non-derivatized MS/MS Non-Kit | 50 | 2.35 | 0.25 | 0.47 | 0.17 | 0.88 | | Deriv-MS/MS PE NeoGram | 178 | 2.17 | 0.37 | 0.41 | 0.16 | 0.84 | | Non-deriv MS/MS PE NeoGram | 49 | 2.25 | 0.49 | 0.49 | 0.19 | 0.82 | | Lot 568 - Enriched 5 μmol/L who | le blood | | | | | | | Derivatized-MS/MS Non-Kit | 645 | 5.07 | 0.55 | 0.83 | 0.19 | 0.97 | | Non-derivatized MS/MS Non-Kit | 50 | 4.61 | 0.50 | 1.20 | 0.19 | 0.88 | | Deriv-MS/MS PE NeoGram | 176 | 4.40 | 0.68 | 0.78 | 0.17 | 0.84 | | Non-deriv MS/MS PE NeoGram | 48 | 4.30 | 0.61 | 0.76 | 0.19 | 0.82 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### ISOVALERYLCARNITINE (µmol C5/L whole blood) | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |----------------------------------|----------|------|-----------------------------|----------|------------------|-------| | | | | | | | | | Lot 565 - Nonenriched 0 µmol/L | whole b | lood | | | | | | Derivatized-MS/MS Non-Kit | 662 | 0.16 | 0.04 | 0.06 | 0.13 | 1.02 | | Non-derivatized MS/MS
Non-Kit | 50 | 0.14 | 0.03 | 0.05 | 0.10 | 0.99 | | Deriv-MS/MS PE NeoGram | 179 | 0.16 | 0.05 | 0.05 | 0.13 | 0.94 | | Non-deriv MS/MS PE NeoGram | 40 | 0.13 | 0.05 | 0.05 | 0.13 | 0.81 | | Lot 566 - Enriched 0.5 μmol/L wh | nole blo | od | | | | | | Derivatized-MS/MS Non-Kit | 655 | 0.62 | 0.08 | 0.13 | 0.13 | 1.02 | | Non-derivatized MS/MS Non-Kit | 50 | 0.57 | 0.08 | 0.13 | 0.10 | 0.99 | | Deriv-MS/MS PE NeoGram | 177 | 0.57 | 0.06 | 0.10 | 0.10 | 0.99 | | Non-deriv MS/MS PE NeoGram | 40 | 0.56 | 0.11 | 0.15 | 0.13 | 0.94 | | Lot 567 - Enriched 1.5 μmol/L wh | nole blo | od | | | | | | Derivatized-MS/MS Non-Kit | 645 | 1.66 | 0.20 | 0.31 | 0.13 | 1.02 | | Non-derivatized MS/MS Non-Kit | 50 | 1.57 | 0.12 | 0.19 | 0.10 | 0.99 | | Deriv-MS/MS PE NeoGram | 179 | 1.50 | 0.24 | 0.29 | 0.13 | 0.94 | | Non-deriv MS/MS PE NeoGram | 39 | 1.39 | 0.25 | 0.25 | 0.13 | 0.81 | | Lot 568 - Enriched 3 μmol/L who | le blood | I | | | | | | Derivatized-MS/MS Non-Kit | 642 | 3.21 | 0.37 | 0.61 | 0.13 | 1.02 | | Non-derivatized MS/MS Non-Kit | 49 | 3.09 | 0.30 | 0.39 | 0.10 | 0.99 | | Deriv-MS/MS PE NeoGram | 176 | 2.97 | 0.40 | 0.47 | 0.13 | 0.94 | | Non-deriv MS/MS PE NeoGram | 39 | 2.54 | 0.38 | 0.41 | 0.13 | 0.81 | | 25117 1110/1110 1 E 113001a111 | | - | | | | | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### GLUTARYLCARNITINE (µmol C5DC/L whole blood) | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |--|-------------------------------------|------------------------------|-----------------------------|----------------------|----------------------|----------------------| | - HIGHIOU | - IN | Mican | | | тистосри | 0.000 | | Lot 565 - CDC Assayed 0.07 μm | ol/L whol | e blood | | | | | | Derivatized-MS/MS Non-Kit | 640 | 0.05 | 0.02 | 0.03 | 0.00 | 0.69 | | Non-derivatized MS/MS Non-Kit | 46 | 0.05 | 0.02 | 0.05 | 0.00 | 0.65 | | Deriv-MS/MS PE NeoGram | 172 | 0.07 | 0.02 | 0.02 | 0.00 | 1.03 | | Non-deriv MS/MS PE NeoGram | 39 | 0.21 | 0.07 | 0.09 | 0.10 | 1.71 | | | | | | | | | | Lot 566 - CDC Assayed 0.10 μm | ol/L whol | e blood | | | | | | Derivatized-MS/MS Non-Kit | 630 | 0.07 | 0.02 | 0.05 | 0.00 | 0.69 | | Non-derivatized MS/MS Non-Kit | 45 | 0.06 | 0.02 | 0.05 | 0.00 | 0.65 | | Deriv-MS/MS PE NeoGram | 176 | 0.10 | 0.03 | 0.04 | 0.00 | 1.03 | | Non-deriv MS/MS PE NeoGram | 39 | 0.24 | 0.07 | 0.09 | 0.10 | 1.71 | | | | | | | | | | Lot 567 - CDC Assayed 0.50 μm | ol/L whol | e blood | | | | | | | 637 | 0.36 | 0.09 | 0.14 | 0.00 | 0.69 | | Derivatized-MS/MS Non-Kit
Non-derivatized MS/MS Non-Kit | 637
46 | 0.36
0.32 | 0.04 | 0.27 | 0.00 | 0.65 | | Derivatized-MS/MS Non-Kit
Non-derivatized MS/MS Non-Kit
Deriv-MS/MS PE NeoGram | 637
46
179 | 0.36
0.32
0.52 | 0.04
0.10 | 0.27
0.20 | 0.00
0.00 | 0.65
1.03 | | Lot 567 - CDC Assayed 0.50 μm
Derivatized-MS/MS Non-Kit
Non-derivatized MS/MS Non-Kit
Deriv-MS/MS PE NeoGram
Non-deriv MS/MS PE NeoGram | 637
46 | 0.36
0.32 | 0.04 | 0.27 | 0.00 | 0.65 | | Derivatized-MS/MS Non-Kit
Non-derivatized MS/MS Non-Kit
Deriv-MS/MS PE NeoGram | 637
46
179
39 | 0.36
0.32
0.52
1.00 | 0.04
0.10 | 0.27
0.20 | 0.00
0.00 | 0.65
1.03 | | Derivatized-MS/MS Non-Kit
Non-derivatized MS/MS Non-Kit
Deriv-MS/MS PE NeoGram
Non-deriv MS/MS PE NeoGram | 637
46
179
39 | 0.36
0.32
0.52
1.00 | 0.04
0.10
0.19 | 0.27
0.20
0.19 | 0.00
0.00
0.10 | 0.65
1.03
1.71 | | Derivatized-MS/MS Non-Kit Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram Non-deriv MS/MS PE NeoGram Lot 568 - CDC Assayed 0.98 μm Derivatized-MS/MS Non-Kit | 637
46
179
39
ol/L whol | 0.36
0.32
0.52
1.00 | 0.04
0.10
0.19 | 0.27
0.20
0.19 | 0.00
0.00
0.10 | 0.65
1.03
1.71 | | Derivatized-MS/MS Non-Kit
Non-derivatized MS/MS Non-Kit
Deriv-MS/MS PE NeoGram
Non-deriv MS/MS PE NeoGram | 637
46
179
39 | 0.36
0.32
0.52
1.00 | 0.04
0.10
0.19 | 0.27
0.20
0.19 | 0.00
0.00
0.10 | 0.65
1.03
1.71 | Note that for both kit and non-kit users, the calculation of concentrations for the quality control lots varied with type of internal standard. Data are not sorted by internal standard type. In a 2003 survey, participants reported using d_9 -C5, d_3 -C10, d_3 -C12, d_3 -C16, or d_6 -C5DC as an internal standard for C5DC. ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus CDC assayed concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### HEXANOYLCARNITINE (µmol C6/L whole blood) | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |----------------------------------|-----------|------|-----------------------------|----------|------------------|-------| | | | | | | | | | Lot 565 - Nonenriched 0 μmol/L | whole blo | ood | | | | | | Derivatized-MS/MS Non-Kit | 663 | 0.06 | 0.02 | 0.04 | 0.04 | 0.94 | | Non-derivatized MS/MS Non-Kit | 40 | 0.07 | 0.02 | 0.05 | 0.05 | 0.94 | | Deriv-MS/MS PE NeoGram | 172 | 0.06 | 0.03 | 0.04 | 0.05 | 0.86 | | Non-deriv MS/MS PE NeoGram | 39 | 0.04 | 0.03 | 0.04 | 0.02 | 0.88 | | Lot 566 - Enriched 0.5 μmol/L wh | nole bloo | d | | | | | | Derivatized-MS/MS Non-Kit | 665 | 0.49 | 0.08 | 0.13 | 0.04 | 0.94 | | Non-derivatized MS/MS Non-Kit | 40 | 0.50 | 0.06 | 0.11 | 0.05 | 0.94 | | Deriv-MS/MS PE NeoGram | 178 | 0.48 | 0.10 | 0.12 | 0.05 | 0.86 | | Non-deriv MS/MS PE NeoGram | 40 | 0.47 | 0.10 | 0.13 | 0.02 | 0.88 | | Lot 567 - Enriched 1.0 μmol/L wh | | | | | | | | Derivatized-MS/MS Non-Kit | 668 | 0.98 | 0.15 | 0.24 | 0.04 | 0.94 | | Non-derivatized MS/MS Non-Kit | 39 | 0.97 | 0.07 | 0.14 | 0.05 | 0.94 | | Deriv-MS/MS PE NeoGram | 176 | 0.90 | 0.16 | 0.17 | 0.05 | 0.86 | | Non-deriv MS/MS PE NeoGram | 40 | 0.87 | 0.12 | 0.13 | 0.02 | 0.88 | | Lot 568 - Enriched 2.5 μmol/L wh | nole bloo | d | | | | | | Derivatized-MS/MS Non-Kit | 663 | 2.39 | 0.30 | 0.53 | 0.04 | 0.94 | | Non-derivatized MS/MS Non-Kit | 39 | 2.40 | 0.19 | 0.40 | 0.05 | 0.94 | | Deriv-MS/MS PE NeoGram | 176 | 2.21 | 0.32 | 0.39 | 0.05 | 0.86 | | Non-deriv MS/MS PE NeoGram | 40 | 2.23 | 0.20 | 0.36 | 0.02 | 0.88 | | | | | | | | | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses ## $\boldsymbol{OCTANOYLCARNITINE} \; (\mu mol \; C8/L \; whole \; blood)$ | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |---------------------------------------|-----------|--------------|-----------------------------|----------|------------------|--------------| | Metriod | 14 | Wican | | | пистосри | Сюро | | Lat EGE Nananriahad Omal/L | ubolo ble | and . | | | | | | Lot 565 - Nonenriched 0 μmol/L | | | | | | | | Derivatized-MS/MS Non-Kit | 679 | 0.09 | 0.03 | 0.05 | 0.07 | 1.11 | | Non-derivatized MS/MS Non-Kit | 73 | 0.08 | 0.02 | 0.04 | 0.05 | 1.12 | | Deriv-MS/MS PE NeoGram | 184 | 0.08 | 0.04 | 0.04 | 0.06 | 0.91 | | Non-deriv MS/MS PE NeoGram | 49 | 0.07 | 0.03 | 0.03 | 0.06 | 0.99 | | | | | | | | | | Lot 566 - Enriched 0.5 μmol/L wh | nole bloo | d | | | | | | Derivatized-MS/MS Non-Kit | 660 | 0.60 | 0.08 | 0.11 | 0.07 | 1.11 | | Non-derivatized MS/MS Non-Kit | 70 | 0.59 | 0.06 | 0.07 | 0.05 | 1.12 | | Deriv-MS/MS PE NeoGram | 187 | 0.50 | 0.11 | 0.13 | 0.06 | 0.91 | | Non-deriv MS/MS PE NeoGram | 50 | 0.51 | 0.07 | 0.08 | 0.06 | 0.99 | | Lot 567 - Enriched 1.0 μmol/L wh | nole bloo | d | | | | | | · · · · · · · · · · · · · · · · · · · | 668 | 1.19 | 0.16 | 0.22 | 0.07 | 1.11 | | Derivatized-MS/MS Non-Kit | 73 | 1.19 | 0.16 | 0.22 | 0.07 | 1.11 | | Non-derivatized MS/MS Non-Kit | | | | | | | | Deriv-MS/MS PE NeoGram | 187 | 0.95
1.08 | 0.19
0.11 | 0.22 | 0.06
0.06 | 0.91
0.99 | | Non-deriv MS/MS PE NeoGram | 48 | 1.08 | 0.11 | 0.12 | 0.06 | 0.99 | | | .1 | | | | | | | _ot 568 - Enriched 2.5 μmol/L wh | | | | | | | | Derivatized-MS/MS Non-Kit | 672 | 2.84 | 0.36 | 0.53 | 0.07 | 1.11 | | Non-derivatized MS/MS Non-Kit | 70 | 2.88 | 0.26 | 0.38 | 0.05 | 1.12 | | Deriv-MS/MS PE NeoGram | 187 | 2.35 | 0.36 | 0.42 | 0.06 | 0.91 | | Non-deriv MS/MS PE NeoGram | 49 | 2.53 | 0.21 | 0.27 | 0.06 | 0.99 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### **DECANOYLCARNITINE** (µmol C10/L whole blood) | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |--|------------------|------------|-----------------------------|--------------|------------------|--------------| | | | | | | | | | Lot 565 - Nonenriched 0 μmol/L v | whole blo | ood | | | | | | Derivatized-MS/MS Non-Kit | 638 | 0.10 | 0.03 | 0.04 | 0.11 | 1.27 | | Non-derivatized MS/MS Non-Kit | 38 | 0.09 | 0.02 | 0.03 | 0.08 | 1.15 | | Deriv-MS/MS PE NeoGram | 183 | 0.10 | 0.04 | 0.04 | 0.09 | 0.88 | | Non-deriv MS/MS PE NeoGram | 49 | 0.09 | 0.03 | 0.04 | 0.09 | 0.93 | | Lot 566 - Enriched 0.25 μmol/L v | vhole blo | od | | | | | | Derivatized-MS/MS Non-Kit | 649 | 0.43 | 0.07 | 0.11 | 0.11 | 1.27 | | Non-derivatized MS/MS Non-Kit | 40 | 0.38 | 0.05 |
0.06 | 0.08 | 1.15 | | Deriv-MS/MS PE NeoGram | 182 | 0.32 | 0.08 | 0.10 | 0.09 | 0.88 | | Non-deriv MS/MS PE NeoGram | 48 | 0.33 | 0.09 | 0.11 | 0.09 | 0.93 | | Lot 567 - Enriched 0.75 μmol/L v | /hole blo
651 | od
1.04 | 0.16 | 0.24 | 0.11 | 1.27 | | Derivatized-MS/MS Non-Kit | 39 | 0.91 | 0.16 | | 0.08 | 1.27 | | Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram | 39
185 | 0.69 | 0.06 | 0.13
0.17 | 0.08 | 0.88 | | Non-deriv MS/MS PE NeoGram | 50 | 0.09 | 0.12 | 0.17 | 0.09 | 0.88 | | TON GOIN MONIOTE NOOTAIN | | 0.11 | 3.10 | 5.10 | 0.00 | 3.00 | | | | | | | | | | Lot 568 - Enriched 1.5 μmol/L wh | nole bloo | a | | | | | | · · · · · · · · · · · · · · · · · · · | ole bloo | 2.01 | 0.28 | 0.48 | 0.11 | 1.27 | | Derivatized-MS/MS Non-Kit | | | 0.28
0.16 | 0.48
0.24 | 0.11
0.08 | 1.27
1.15 | | Lot 568 - Enriched 1.5 µmol/L wh
Derivatized-MS/MS Non-Kit
Non-derivatized MS/MS Non-Kit
Deriv-MS/MS PE NeoGram | 642 | 2.01 | | | | | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### MYRISTOYLCARNITINE (µmol C14/L whole blood) | | | | Average
Within | | Y- | | |--|------------|------|-------------------|----------|------------|-------| | Method | N | Mean | Lab SD | Total SD | Intercept* | Slope | | | | | | | | | | Lot 565 - Nonenriched 0 μmol/L ν | whole blo | od | | | | | | Derivatized-MS/MS Non-Kit | 638 | 0.14 | 0.04 | 0.05 | 0.17 | 1.02 | | Non-derivatized MS/MS Non-Kit | 29 | 0.11 | 0.02 | 0.03 | 0.12 | 1.13 | | Deriv-MS/MS PE NeoGram | 177 | 0.14 | 0.04 | 0.05 | 0.14 | 0.91 | | Non-deriv MS/MS PE NeoGram | 49 | 0.08 | 0.03 | 0.03 | 0.09 | 0.68 | | | | | | | | | | | | | | | | | | Lot 566 - Enriched 0.5 μmol/L wh | nole blood | t t | | | | | | Derivatized-MS/MS Non-Kit | 657 | 0.65 | 0.12 | 0.18 | 0.17 | 1.02 | | Non-derivatized MS/MS Non-Kit | 30 | 0.63 | 0.06 | 0.13 | 0.12 | 1.13 | | Deriv-MS/MS PE NeoGram | 175 | 0.58 | 0.10 | 0.12 | 0.14 | 0.91 | | Non-deriv MS/MS PE NeoGram | 49 | 0.41 | 0.06 | 0.17 | 0.09 | 0.68 | | | | | | | | | | Lot 567 - Enriched 1.5 μmol/L wh | nole blood | d | | | | | | Derivatized-MS/MS Non-Kit | 644 | 1.82 | 0.23 | 0.37 | 0.17 | 1.02 | | Non-derivatized MS/MS Non-Kit | 30 | 1.94 | 0.20 | 0.29 | 0.12 | 1.13 | | Deriv-MS/MS PE NeoGram | 174 | 1.55 | 0.21 | 0.28 | 0.14 | 0.91 | | Non-deriv MS/MS PE NeoGram | 48 | 1.18 | 0.12 | 0.28 | 0.09 | 0.68 | | | | | | | | | | | | | | | | | | Lot 568 - Enriched 3 μmol/L who | le blood | | | | | | | Derivatized-MS/MS Non-Kit | 649 | 3.19 | 0.41 | 0.65 | 0.17 | 1.02 | | | 30 | 3.44 | 0.35 | 0.56 | 0.12 | 1.13 | | Non-derivatized MS/MS Non-Kit | 30 | 5.77 | 0.00 | 0.50 | 0.12 | 1.13 | | Non-derivatized MS/MS Non-Kit Deriv-MS/MS PE NeoGram | 172 | 2.86 | 0.41 | 0.50 | 0.12 | 0.91 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus CDC assayed concentrations and extrapolating the regression to the Y-axis. #### 2006 Quality Control Data Summaries of Statistical Analyses #### PALMITOYLCARNITINE (µmol C16/L whole blood) | Method | N | Mean | Average
Within
Lab SD | Total SD | Y-
Intercept* | Slope | |---|-----------|----------------|-----------------------------|--------------|------------------|--------------| | | | | | | · | | | Lot 565 - Nonenriched 0 μmol/L | whole blo | ood | | | | | | Derivatized-MS/MS Non-Kit | 674 | 1.40 | 0.23 | 0.42 | 1.42 | 0.95 | | Non-derivatized MS/MS Non-Kit | 49 | 1.29 | 0.12 | 0.19 | 1.31 | 0.94 | | Deriv-MS/MS PE NeoGram | 180 | 1.22 | 0.21 | 0.24 | 1.18 | 0.84 | | Non-deriv MS/MS PE NeoGram | 48 | 1.27 | 0.19 | 0.19 | 1.31 | 1.00 | | Lat 566 Enriched Aumal/Lyda | la bland | | | | | | | Lot 566 - Enriched 4 μmol/L who | | | 0.54 | 4.04 | 4.40 | 0.05 | | Derivatized-MS/MS Non-Kit | 658 | 5.20 | 0.54 | 1.01 | 1.42 | 0.95 | | Non-derivatized MS/MS Non-Kit | 50 | 5.09 | 0.53 | 0.53 | 1.31 | 0.94 | | Deriv-MS/MS PE NeoGram Non-deriv MS/MS PE NeoGram | 177
48 | 4.56
5.28 | 0.65
0.55 | 0.76
0.55 | 1.18
1.31 | 0.84
1.00 | | Lat 507 Fasiahad Q maal/Ludha | ام مام ما | | | | | | | Lot 567 - Enriched 8 μmol/L who | | | | | | | | Derivatized-MS/MS Non-Kit | 677 | 9.18 | 1.08 | 2.05 | 1.42 | 0.95 | | Non-derivatized MS/MS Non-Kit | 49 | 8.80 | 0.79 | 0.82 | 1.31 | 0.94 | | Deriv-MS/MS PE NeoGram | 176 | 7.69 | 0.93 | 1.12 | 1.18 | 0.84 | | Non-deriv MS/MS PE NeoGram | 49 | 9.50 | 1.10 | 1.25 | 1.31 | 1.00 | | Lot 568 - Enriched 12 μmol/L wh | ole blood | I | | | | | | Derivatized-MS/MS Non-Kit | 677 | 12.76 | 1.44 | 2.92 | 1.42 | 0.95 | | | | | | | | | | Non-derivatized MS/MS Non-Kit | 49 | 12.53 | 1.15 | 1.20 | 1.31 | 0.94 | | Non-derivatized MS/MS Non-Kit
Deriv-MS/MS PE NeoGram | 49
179 | 12.53
11.33 | 1.15
1.30 | 1.20
1.57 | 1.31
1.18 | 0.94
0.84 | ^{*}Estimated by performing a weighted linear regression analysis of mean reported concentrations versus enriched concentrations and extrapolating the regression to the Y-axis. ## **NOTES** This NEWBORN SCREENING QUALITY ASSURANCE PROGRAM report is an internal publication distributed to program participants and selected program colleagues. The laboratory quality assurance program is a project cosponsored by the Centers for Disease Control and Prevention (CDC) and the Association of Public Health Laboratories. ## CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC) ATLANTA, GA 30341 #### Director Julie Louise Gerberding, M.D., M.P.H. #### Director **National Center for Environmental Health** Howard Frumkin, M.D., Dr.P.H., M.P.H. Directo **Division of Laboratory Sciences** Eric J. Sampson, Ph.D. Chief **Newborn Screening Branch** W. Harry Hannon, Ph.D. Contributors: Barbara W. Adam Carol Bell Paul Dantonio Marie C. Earley, Ph.D. F. Hugh Gardner Sherri Hall L. Omar Henderson, Ph.D. Sharon Kerr Lixia Li, Ph.D. Timothy Lim, Ph.D. Elizabeth McCown Joanne Mei, Ph.D. Nancy Meredith Nishi Patel Anand Swamy, Ph.D. Robert Vogt, Ph.D. Production: Sarah Brown Felicia Manning Connie Singleton ## ASSOCIATION OF PUBLIC HEALTH LABORATORIES WASHINGTON, DC 20036-3320 Jane Getchell, Dr.P.H. Chairman, Newborn Screening and Genetics in Public Health Committee William Becker, D.O., M.P.H. Chairman, Newborn Screening Quality Assurance Subcommittee John Sherwin, Ph.D. #### INQUIRIES TO: PHL ASSOCIATION OF